Effects of Incorporation of Multicomponent Active Agents in Chitosan Biopolymer: A Simple Method for Sustainable Food Packaging Biomaterials
Main Article Content
Abstract
Chitosan-gelatin (Ch-ge) based transparent films containing gallic-acid (GA) grafted starch nanoparticles (GA-SNPs) namely, Ch-ge-GA-SNP-1 and Ch-ge-GA-SNP-2 with different amounts of GA-SNPs have been synthesized by solution casting method and characterized. The incorporation of multicomponents showed effective properties of chitosan films. Scanning Electron Microscopy (SEM), XRD and FTIR analysis revealed a homogenous and transparent nature and uniform distribution of the newly synthesized films respectively. The antibacterial activity of the films against both gram-positive and gram-negative bacteria (B. substilis and E. coli) indicated that Ch-ge-GA-SNP-2 films had pronounced antibacterial activity. The antioxidant activity of Ch-ge-GA-SNP-2 films was determined by DPPH and ABTS methods and results corresponded to 80.9% of DPPH and 84.9% of ABTS free radicals scavenging activities. The results indicated that Ch-ge-GA-SNP-2 films present a definitive advantage in terms of their barrier properties, mechanical strength as well as antibacterial and anti-oxidant activity compared to pristine chitosan-gelatin films.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
H. Wang, J. Qian, F. Ding. Emerging Chitosan-Based Films for Food Packaging Applications. J. Agric. Food Chem., 2018, 66, 395. https://doi.org/10.1021/acs.jafc.7b04528
R. Sharma, S. Mahdi, S. Sharma. Antimicrobial bio-nanocomposites and their potential applications in food packaging. Food Control, 2020, 112, 107086. https://doi.org/10.1016/j.foodcont.2020.107086
P. Cazón, G. Velazquez, J. A. Ramírez, M. Vázquez. Polysaccharide-based films and coatings for food packaging: A review. Food Hydrocoll., 2017, 68, 136. https://doi.org/10.1016/j.foodhyd.2016.09.009
S. Ali, X. Chen, S. Ahmad, W. Shah, M. Shafique, P. Chaubey, G. Mustafa, A. Alrashidi, S. Alharthi. Advancements and challenges in phytochemical-mediated silver nanoparticles for food packaging: Recent review (2021–2023). Trends Food Sci Technol., 2023, 141, 104197. https://doi.org/10.1016/j.tifs.2023.104197
G. F. Mehyar, A. A. Al Nabulsi, M. Saleh, A. N. Olaimat, R. A. Holley. Effects of chitosan coating containing lysozyme or natamycin on shelf-life, microbial quality, and sensory properties of Halloumi cheese brined in normal and reduced salt solutions. J. Food Process. Preserv., 2018, 42,1. https://doi.org/10.1111/jfpp.13324
L. A. M. Van Den Broek, R. J. I. Knoop, F. H. J. Kappen, C. G. Boeriu. Chitosan films and blends for packaging material. Carbohydr. Polym., 2015, 116, 237. https://doi.org/10.1016/j.carbpol.2014.07.039
I. R. S. Vieira, A. P. A. de Carvalho, C.A. Conte-Junior. Recent advances in biobased and biodegradable polymer nanocomposites, nanoparticles, and natural antioxidants for antibacterial and antioxidant food packaging applications. Compr Rev Food Sci Food Saf., 2022, 21 3673. https://doi.org/10.1111/1541-4337.12990
A. Jiang, R. Patel, B. Padhan, S. Palimkar, P. Galgali, A. Adhikari, I. Varga, M. Patel. Chitosan Based Biodegradable Composite for Antibacterial Food Packaging Application. Polymers, 2023, 15, 2235. https://doi.org/10.3390/polym15102235
X. Yang, Q. Yu, W. Gao, X. Tang, H. Yi, X. Tang. The mechanism of metal-based antibacterial materials and the progress of food packaging applications: A review. Ceram. Int., 2022, 48, 34148. https://doi.org/10.1016/j.ceramint.2022.08.249.
X. Hu, C. Lu, H. Tang, H. Pouri, E. Joulin, J. Zhang. Active Food Packaging Made of Biopolymer-Based Composites. Materials, 2023, 16, 279. https://doi.org/10.3390/ma16010279
M. Wang, Z. Wei, Z. Zhang. Antimicrobial Edible Films for Food Preservation: Recent Advances and Future Trends. Food Bioprocess Technol, 2024, 17, 1391. https://doi.org/10.1007/s11947-023-03178-y
L. Cai, H. Shi, A. Cao, J. Jia. Characterization of gelatin/chitosan polymer films integrated with docosahexaenoic acids fabricated by different methods. Sci Rep, 2019, 9, 1. https://doi.org/10.1038/s41598-019-44807-x
L. Rui, M. Xie, B. Hu, L. Zhou, D. Yin, X. Zeng. A comparative study on chitosan/gelatin composite films with conjugated or incorporated gallic acid. Carbohydr. Polym., 2017, 173, 473. https://doi.org/10.1016/j.carbpol.2017.05.072
A. G. Sagdicoglu Celep, A. Demirkaya, E. K. Solak. Antioxidant and anticancer activities of gallic acid loaded sodium alginate microspheres on colon cancer. Curr. Appl. Phys., 2022, 40, 30. https://doi.org/10.1016/j.cap.2020.06.002
I. Zarandona, A. I. Puertas, M. T. Dueñas, P. Guerrero, K. de la Caba. Assessment of active chitosan films incorporated with gallic acid. Food Hydrocoll., 2020, 101, 105486. https://doi.org/10.1016/j.foodhyd.2019.105486
Y. Zhang, C. Pu, W. Tang, S. Wang, Q. Sun. Gallic acid liposomes decorated with lactoferrin: Characterization, in vitro digestion and antibacterial activity. Food Chem., 2019, 293, 315. https://doi.org/10.1016/j.foodchem.2019.04.116
S. F. Hosseini, M. Rezaei, M. Zandi, F. Farahmandghavi. Development of bioactive fish gelatin/chitosan nanoparticles composite films with antimicrobial properties. Food Chem., 2016, 194, 1266. https://doi.org/10.1016/j.foodchem.2015.09.004
E. Poverenov, Y. Zaitsev, H. Arnon, R. Granit, S. Alkalai-Tuvia, Y. Perzelan, T. Weinberg, E. Fallik. Effects of a composite chitosan-gelatin edible coating on postharvest quality and storability of red bell peppers. Postharvest Biol. Technol., 2014, 96, 106. https://doi.org/10.1016/j.postharvbio.2014.05.015
O. Moreno, J. Cárdenas, L. Atarés, A. Chiralt. Influence of starch oxidation on the functionality of starch-gelatin based active films. Carbohydr. Polym., 2017, 178, 147. https://doi.org/10.1016/j.carbpol.2017.08.128
R. A. Shapi’i, S. H. Othman, N. Nordin, R. Kadir Basha, M. Nazli Naim. Antimicrobial properties of starch films incorporated with chitosan nanoparticles: In vitro and in vivo evaluation. Carbohydr. Polym., 2020, 230, 115602. https://doi.org/10.1016/j.carbpol.2019.115602
R. A. Shapi’i, S. H. Othman, M. N. Naim, R. K. Basha. Mechanical properties of tapioca starch-based film incorporated with bulk chitosan and chitosan nanoparticle: A comparative study. Pertanika J. Sci. & Technol., 2019, 27, 95.
Y. Qin, P. Li. Antimicrobial chitosan conjugates: Current synthetic strategies and potential applications. Int. J. Mol. Sci., 2020, 21, 499. https://doi.org/10.3390/ijms21020499
D. Merino, A. Y. Mansilla, T. J. Gutiérrez, C. A. Casalongué, V. A. Alvarez. Chitosan coated-phosphorylated starch films: Water interaction, transparency and antibacterial properties. React. Funct. Polym., 2018, 131, 445. https://doi.org/10.1016/j.reactfunctpolym.2018.08.012
J. F. Mendes, R. T. Paschoalin, V. B. Carmona, A. R. Sena Neto, A. C. P. Marques, J. M. Marconcini, L. H. C. Mattoso, E. S. Medeiros, J. E. Oliveira. Biodegradable polymer blends based on corn starch and thermoplastic chitosan processed by extrusion. Carbohydr. Polym., 2016, 137, 452. https://doi.org/10.1016/j.carbpol.2015.10.093
Y. Zhao, J. S. Teixeira, M. M. Gänzle, M. D. A. Saldaña. Development of antimicrobial films based on cassava starch, chitosan and gallic acid using subcritical water technology. J. Supercrit. Fluids, 2018, 137, 101. https://doi.org/10.1016/j.supflu.2018.03.010
Y. Qin, L. Xiong, M. Li, J. Liu, H. Wu, H. Qiu, H. Mu, X. Xu, Q. Sun. Preparation of Bioactive Polysaccharide Nanoparticles with Enhanced Radical Scavenging Activity and Antimicrobial Activity. J. Agric. Food Chem., 2018, 66 4373. https://doi.org/10.1021/acs.jafc.8b00388
J. Liu, H. Yong, Y. Liu, R. Bai. Recent advances in the preparation, structural characteristics, biological properties and applications of gallic acid grafted polysaccharides. Int. J. Biol. Macromol., 2020, 156, 1539. https://doi.org/10.1016/j.ijbiomac.2019.11.202
B. Duan, P. Sun, X. Wang, C. Yang. Preparation and properties of starch nanocrystals/carboxymethyl chitosan nanocomposite films. Starch – Stärke, 2011, 63, 528. https://doi.org/10.1002/star.201000136
X. Zhang, J. Liu, C. Qian, J. Kan, C. Jin. Effect of grafting method on the physical property and antioxidant potential of chitosan film functionalized with gallic acid. Food Hydrocoll., 2019, 89, 1. https://doi.org/10.1016/j.foodhyd.2018.10.023
U.G. Spizzirri, F. Iemma, F. Puoci, G. Cirillo, M. Curcio, O.I. Parisi, N. Picci. Synthesis of Antioxidant Polymers by Grafting of Gallic Acid and Catechin on Gelatin. Biomacromolecules, 2009, 10, 1923. https://doi.org/10.1021/bm900325t
Y. Qin, J. Wang, C. Qiu, Y. Hu, X. Xu, Z. Jin. Self-Assembly of Metal-Phenolic Networks as Functional Coatings for Preparation of Antioxidant, Antimicrobial, and pH-Sensitive-Modified Starch Nanoparticles. ACS Sustain. Chem. Eng., 2019, 7, 17379. https://doi.org/10.1021/acssuschemeng.9b04332
N. Hari, S. Francis, A. G. Rajendran Nair, A. J. Nair. Synthesis, characterization and biological evaluation of chitosan film incorporated with β-Carotene loaded starch nanocrystals. Food Packag. Shelf Life, 2018, 16, 69. https://doi.org/10.1016/j.fpsl.2018.02.003
C. Chi, X. Li, Y. Zhang, L. Chen, L. Li, Z. Wang. Digestibility and supramolecular structural changes of maize starch by non-covalent interactions with gallic acid. Food Funct., 2017, 8, 720. https://doi.org/10.1039/c6fo01468b
R. Priyadarshi, Y. S. Negi. Effect of Varying Filler Concentration on Zinc Oxide Nanoparticle Embedded Chitosan Films as Potential Food Packaging Material, J. Polym. Environ., 2016, 25, 1087. https://doi.org/10.1007/s10924-016-0890-4
A. P. M. Silva, A. V. Oliveira, S. M. A. Pontes, A. L. S. Pereira, M. de sá M. Souza Filho, M. F. Rosa, H. M. C. Azeredo. Mango kernel starch films as affected by starch nanocrystals and cellulose nanocrystals. Carbohydr. Polym., 2019, 211, 209. https://doi.org/10.1016/j.carbpol.2019.02.013
F. Acevedo, J. Hermosilla, C. Sanhueza, B. Mora-Lagos, I. Fuentes, M. Rubilar, A. Concheiro, C. Alvarez-Lorenzo. Gallic acid loaded PEO-core/zein-shell nanofibers for chemopreventive action on gallbladder cancer cells. Eur. J. Pharm. Sci., 2018, 119, 49. https://doi.org/10.1016/j.ejps.2018.04.009
H. Chen, X. Hu, E. Chen, S. Wu, D. J. McClements, S. Liu, B. Li, Y. Li. Preparation, characterization, and properties of chitosan films with cinnamaldehyde nanoemulsions, Food Hydrocoll., 2016, 61, 662. https://doi.org/10.1016/j.foodhyd.2016.06.034
K. Ziani, J. Oses, V. Coma, J. I. Maté. Effect of the presence of glycerol and Tween 20 on the chemical and physical properties of films based on chitosan with different degree of deacetylation. LWT, 2008, 41, 2159. https://doi.org/10.1016/j.lwt.2007.11.023
H. Haghighi, S. Biard, F. Bigi, R. De Leo, E. Bedin, F. Pfeifer, H. W. Siesler, F. Licciardello, A. Pulvirenti. Comprehensive characterization of active chitosan-gelatin blend films enriched with different essential oils. Food Hydrocoll., 2019, 95, 33. https://doi.org/10.1016/j.foodhyd.2019.04.019
J. T. Martins, M. A. Cerqueira, A. A. Vicente. Influence of α-tocopherol on physicochemical properties of chitosan-based films. Food Hydrocoll., 2012, 27, 220. https://doi.org/10.1016/j.foodhyd.2011.06.011
M. Pereda, A. G. Ponce, N. E. Marcovich, R. A. Ruseckaite, J. F. Martucci. Chitosan-gelatin composites and bi-layer films with potential antimicrobial activity. Food Hydrocoll., 2011, 25, 1372. https://doi.org/10.1016/j.foodhyd.2011.01.001
S. Ahmed, S. Ikram. Chitosan and gelatin based biodegradable packaging films with UV-light protection, J. Photochem. Photobiol. B: Biol., 2016, 163, 115. https://doi.org/10.1016/j.jphotobiol.2016.08.023
C.H. Chen, F. Y. Wang, C. F. Mao, W. T. Liao, C. D. Hsieh. Studies of chitosan: II. Preparation and characterization of chitosan/poly(vinyl alcohol)/gelatin ternary blend films. Int. J. Biol. Macromol., 2008, 43, 37. https://doi.org/10.1016/j.ijbiomac.2007.09.005
Y. Peng, Y. Li. Combined effects of two kinds of essential oils on physical, mechanical and structural properties of chitosan films. Food Hydrocoll., 2014, 36, 287. https://doi.org/10.1016/j.foodhyd.2013.10.013
R. J. B. Pinto, S. C. M. Fernandes, C. S. R. Freire, P. Sadocco, J. Causio, C. P. Neto, T. Trindade. Antibacterial activity of optically transparent nanocomposite films based on chitosan or its derivatives and silver nanoparticles. Carbohydr. Res., 2012, 348, 77. https://doi.org/10.1016/j.carres.2011.11.009
A. Ghosh, M. Azam Ali, R. Walls. Modification of microstructural morphology and physical performance of chitosan films. Int. J. Biol. Macromol., 2010, 46, 179. https://doi.org/10.1016/j.ijbiomac.2009.11.006
H. Jafari, M. K. Pirouzifard, M. A. Khaledabad, H. Almasi. Effect of chitin nanofiber on the morphological and physical properties of chitosan/silver nanoparticle bionanocomposite films. Int. J. Biol. Macromol., 2016, 92, 461. https://doi.org/10.1016/j.ijbiomac.2016.07.051
G. Sun, X. Z. Zhang, C. C. Chu. Formulation and characterization of chitosan-based hydrogel films having both temperature and pH sensitivity. J. Mater. Sci.: Mater. Med., 2007, 18, 1563. https://doi.org/10.1007/s10856-007-3030-9
A. Homez-Jara, L. D. Daza, D. M. Aguirre, J. A. Muñoz, J. F. Solanilla, H. A. Váquiro. Characterization of chitosan edible films obtained with various polymer concentrations and drying temperatures. Int. J. Biol. Macromol., 2018, 113, 1233. https://doi.org/10.1016/j.ijbiomac.2018.03.057
L. Akyuz, M. Kaya, S. Ilk, Y. S. Cakmak, A. M. Salaberria, J. Labidi, B. A. Yılmaz, I. Sargin. Effect of different animal fat and plant oil additives on physicochemical, mechanical, antimicrobial and antioxidant properties of chitosan films, Int. J. Biol. Macromol., 2018, 111, 475. https://doi.org/10.1016/j.ijbiomac.2018.01.045
M. Pérez-Mateos, P. Montero, M.C. Gómez-Guillén. Formulation and stability of biodegradable films made from cod gelatin and sunflower oil blends. Food Hydrocoll., 2009, 23, 53. https://doi.org/10.1016/j.foodhyd.2007.11.011
S. Sanuja, A. Agalya, M. J. Umapathy. Synthesis and characterization of zinc oxide-neem oil-chitosan bionanocomposite for food packaging application. Int. J. Biol. Macromol., 2015, 74, 76. https://doi.org/10.1016/j.ijbiomac.2014.11.036
S. Tanpichai, S. Witayakran, J. Wootthikanokkhan, Y. Srimarut, W. Woraprayote, Y. Malila. Mechanical and antibacterial properties of the chitosan coated cellulose paper for packaging applications: Effects of molecular weight types and concentrations of chitosan. Int. J. Biol. Macromol., 2020, 155, 1510. https://doi.org/10.1016/j.ijbiomac.2019.11.128
C. Wu, J. Tian, S. Li, T. Wu, Y. Hu, S. Chen, T. Sugawara, X. Ye. Structural properties of films and rheology of film-forming solutions of chitosan gallate for food packaging, Carbohydr. Polym., 2016, 146, 10. https://doi.org/10.1016/j.carbpol.2016.03.027
M.B. Vásconez, S.K. Flores, C.A. Campos, J. Alvarado, L.N. Gerschenson. Antimicrobial activity and physical properties of chitosan-tapioca starch based edible films and coatings. Food Res Int., 2009, 42, 762. https://doi.org/10.1016/j.foodres.2009.02.026
J. Bonilla, L. Atarés, M. Vargas, A. Chiralt. Properties of wheat starch film-forming dispersions and films as affected by chitosan addition. J. Food Eng., 2013, 114, 303. https://doi.org/10.1016/j.jfoodeng.2012.08.005
M. J. Fabra, I. Falcó, W. Randazzo, G. Sánchez, A. López-Rubio. Antiviral and antioxidant properties of active alginate edible films containing phenolic extracts. Food Hydrocoll., 2018, 81, 96. https://doi.org/10.1016/j.foodhyd.2018.02.026
J. Liu, S. Liu, Y. Chen, L. Zhang, J. Kan, C. Jin. Physical, mechanical and antioxidant properties of chitosan films grafted with different hydroxybenzoic acids. Food Hydrocoll., 2017, 71, 176. https://doi.org/10.1016/j.foodhyd.2017.05.019