Influence of Barium Titanate on Electrospun Piezoelectric and Non-Piezoelectric Polymer Nanofibers Toward Energy Harvesting Applications Polymer Science
Main Article Content
Abstract
The growing demand for self-powered and flexible electronics has drawn attention to piezoelectric materials, capable of converting mechanical energy into usable electricity. Piezoelectric polymeric materials have gained significant attention due to their unique ability to generate electrical signals in response to mechanical deformation, coupled with their lightweight, flexible, and biocompatible nature. These features make them promising candidates for next-generation energy harvesting systems, especially in wearable technology, biomedical implants, and self-powered sensing devices. In this work, we studied the effect of incorporation of barium titanate (BTO) nanoparticles on the electrospun Polyvinylidene Fluoride (PVDF) and Polyvinylpyrrolidone (PVP) for energy harvesting properties. For this, we prepare a piezoelectric polymer (PVDF/BTO) and a non-piezoelectric polymer (PVP/BTO) nanocomposite and compare their energy harvesting properties. BTO nanoparticles were synthesized using a sol-gel method and dispersed in polymer matrices via electrospinning. Detailed structural, thermal, and dielectric characterizations were performed alongside electromechanical testing. Among the systems, the PVDF/BTO nanocomposite demonstrated the highest energy harvesting performance, delivering an output voltage of 3.8 V, current of 2.1 µA, and power of 7.98 µW under cyclic mechanical stress. The PVP/BTO nanofibers, although a non-piezoelectric polymer, demonstrated a moderate output current (1.3 µA) and output voltage (2.4 V), revealing the influence of PVP's dipolar interactions, marking their promising auxiliary role in nanocomposite engineering. On comparison with a non-piezoelectric polymer matrix, there is an increase of 83% performance for PVDF/BTO nanocomposite. These results were attributed to enhanced β-phase formation and interfacial polarization of PVDF, facilitated by the BTO dispersion. This work illustrates the promise of interface-optimized hybrid nanofibers in enabling high-output, flexible nanogenerators for wearable and self-powered technologies.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
C. Dagdeviren, Y. Su, P. Joe, R. Yona, Y. Liu, Y.S. Kim, Y. Huang, A. R. Damadoran, J. Xia, L.W. Martin, Y. Huang, J. A. Rogers. Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring. Nat. Commun. 2014, 5, 4496. https://doi.org/10.1038/ncomms5496
Z. Wu, X. Ding, X. Chen, J. Chen, X. Chang, Z. Liu, L. Song, J. Huang, Y. Zhu. Recent progress of polymer-based piezoelectric nanogenerators. Adv. Compos. Hybr. Mater. 2025, 8 225. https://doi.org/10.1007/s42114-025-01225-0
M. Salama, A. Hamed, S. Noman, G. Magdy, N. Shehata, I. Kandas. Boosting piezoelectric properties of PVDF nanofibers via embedded graphene oxide nanosheets. Sci. Rep. 2024, 14, 16484. https://doi.org/10.1038/s41598-024-66258-9
K. Ren, Y. Shen, Z. L. Wang. Piezoelectric properties of electrospun polymer nanofibers and related energy harvesting applications. Macromol. Mater. Eng. 2024, 309, 2300307. https://doi.org/10.1002/mame.202300307
Y. Wang, L. Zhu, C. Du. Progress in piezoelectric nanogenerators based on PVDF composite films. Micromachines 2021, 12, 1278. https://doi.org/10.3390/mi12111278
J. Zidani, L. Tajounte, A. Benzaouak, N. Touach, A. Duong, M. Zannen, A. Lahmar. Advances in Lead-Free Flexible Piezoelectric Materials for Energy and Evolving Applications. Adv. Ind. Eng. Polym. Res. 2025, 8, 341. https://doi.org/10.1016/j.aiepr.2025.04.001
M. Kumar, S. Choudhary, S. K. Sharma, J. K. Randhawa. Piezoelectric nanogenerators with hybrid nanofibers: a dual approach for energy generation and wastewater treatment. Environ. Sci.: Nano 2025,12, 1431. https://doi.org/10.1039/D4EN00568F
B. Mahanty, S. K. Ghosh, D. W. Lee. Advancements in polymer nanofiber-based piezoelectric nanogenerators: Revolutionizing self-powered wearable electronics and biomedical applications. Chem. Eng. J. 2024, 495, 153481. https://doi.org/10.1016/j.cej.2024.153481
B. J. Hansen, Y. Liu, R. Yang, Z. L. Wang. Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy. ACS Nano 2010, 4, 3647. https://doi.org/10.1021/nn100845b
J. Su, J. Zhang, Recent development on modification of synthesized barium titanate (BaTiO3) and polymer/BaTiO3 dielectric composites. J. Mater. Sci.: Mater. Electron 2019, 30, 1957. https://doi.org/10.1007/s10854-018-0494-y
P. Martins, A. C. Lopes, S. Lanceros-Mendez, Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Prog. Polym. Sci. 2014, 39, 683.
https://doi.org/10.1016/j.progpolymsci.2013.07.006
C. M. Costa, V. F. Cardoso, P. Martins, D. M. Correia, R. Gonçalves, P. Costa, V. Correia, C. Ribeiro, M. M. Fernandes, P. M. Martins, S. Lanceros-Méndez. Smart and Multifunctional Materials Based on Electroactive Poly(vinylidene fluoride): Recent Advances and Opportunities in Sensors, Actuators, Energy, Environmental, and Biomedical Applications. Chem. Rev. 2023, 123, 11392. https://doi.org/10.1021/acs.chemrev.3c00196
S. Banerjee, Y. Patil, T. Ono, B. Ameduri. Synthesis of ω-Iodo and telechelic diiodo vinylidene fluoride-based (co)polymers by iodine transfer polymerization initiated by an innovative persistent radical. Macromolecules 2017, 50, 203. https://doi.org/10.1021/acs.macromol.6b02308
A. Mukherjee, A. Ghosh, B. Dasgupta Ghosh. Fluoropolymer-Based Nanodielectrics for Energy Storage Application, Emerging Nanodielectric Materials for Energy Storage: From Bench to Field. Springer 2024, 357–383. https://doi.org/10.1007/978-3-031-40938-7_13
K. Shi, B. Sun, X. Huang, P. Jiang. Synergistic effect of graphene nanosheet and BaTiO3 nanoparticles on performance enhancement of electrospun PVDF nanofiber mat for flexible piezoelectric nanogenerators. Nano Energy 2018, 52, 153. https://doi.org/10.1016/j.nanoen.2018.07.053
A. Kumari, B. Dasgupta Ghosh. Effect of strontium doping on structural and dielectric behaviour of barium titanate nanoceramics. Adv. Appl. Ceram. 2018, 117, 427. https://doi.org/10.1080/17436753.2018.1491166
M. Maček Kržmanc, D. Klement, B. Jančar, D. Suvorov. Hydrothermal conditions for the formation of tetragonal BaTiO3 particles from potassium titanate and barium salt. Ceram. Int. 2015, 41, 15128. https://doi.org/10.1016/j.ceramint.2015.08.085
Y. Wei, Y. Song, X. Deng, B. Han, X. Zhang, Y. Shen, Y. Lin. Dielectric and ferroelectric properties of BaTiO3 nanofibers prepared via electrospinning. J. Mater. Sci. Technol. 2014, 30, 743. https://doi.org/10.1016/j.jmst.2014.03.021
B. Sahoo, P. K. Panda. Preparation and characterization of barium titanate nanofibers by electrospinning. Ceram. Int. 2012, 38, 5189. https://doi.org/10.1016/j.ceramint.2012.03.025
Z. Li, J. Liao, Z. Xi, W. Zhu, Z. Zhang. Influence of Steric Hindrance on Ferro- and Piezoelectric Performance of Poly(vinylidene fluoride)-Based Ferroelectric Polymers. Macromol. Chem. Phys. 2019, 220, 1900273. https://doi.org/10.1002/macp.201900273
H. Güçlü, H. Kasım, M. Yazici. Investigation of the optimum vibration energy harvesting performance of electrospun PVDF/BaTiO3 nanogenerator. J. Compos. Mater. 2023, 57, 409. https://doi.org/10.1177/00219983221144696
Q. Xu, J. Wen, Y. Qin. Development and outlook of high output piezoelectric nanogenerators. Nano Energy 2021, 86, 106080. https://doi.org/10.1016/j.nanoen.2021.106080
S. Wang, Z. Yu, L. Wang, Y. Wang, D. Yu, M. Wu. A core-shell structured barium titanate nanoparticles for the enhanced piezoelectric performance of wearable nanogenerator. Appl. Energy 2023, 351, 121835. https://doi.org/10.1016/j.apenergy.2023.121835
C. Lang, J. Fang, H. Shao, H. Wang, G. Yan, X. Ding, T. Lin. High-output acoustoelectric power generators from poly(vinylidenefluoride-co-trifluoroethylene) electrospun nano-nonwovens. Nano Energy 2017, 35, 146. https://doi.org/10.1016/j.nanoen.2017.03.038
A. J. Lovinger. POLY(VINYLIDENE FLUORIDE). Jpn. J. Appl. Phys., 1982, 24,18. https://doi.org/ 10.7567/JJAPS.24S2.18
A. K. Nandi, L. Mandelkern. The Influence of Chain Structure on the Equilibrium Melting Temperature of Poly (vinylidene fluoride). J. Polym. Sci. Part B: Polym. Phys. 1991, 29, 1287. https://doi.org/ 10.1002/polb.1991.090291012
D. Y. Lee, M. H. Lee, N. I. Cho, B. Y. Kim, Y. J. Oh. Effect of calcination temperature and atmosphere on crystal structure of BaTiO3 nanofibers. Met. Mater. Int. 2010, 16, 453. https://doi.org/10.1007/s12540-010-0616-4
J. Yuh, L. Perez, W. M. Sigmund, J. C. Nino. Electrospinning of complex oxide nanofibers. Phys. E. Low. Dimens. Syst. Nanostruct. 2007, 37, 254. https://doi.org/10.1016/j.physe.2006.09.013
G. H. Kim, S. M. Hong, Y. Seo. Piezoelectric properties of poly(vinylidene fluoride) and carbon nanotube blends: β-phase development. Phys. Chem. Chem. Phys. 2009, 11, 10506. https://doi.org/10.1039/b912801h
S. Maensiri, W. Nuansing, J. Klinkaewnarong, P. Laokul, J. Khemprasit. Nanofibers of barium strontium titanate (BST) by sol-gel processing and electrospinning. J. Colloid Interface Sci. 2006, 297, 578. https://doi.org/10.1016/j.jcis.2005.11.005
R. Gregorio. Determination of the α, β, and γ crystalline phases of poly(vinylidene fluoride) films prepared at different conditions. J. Appl. Polym. Sci. 2006, 100, 3272. https://doi.org/10.1002/app.23137
B. Kim, Y. Jang, J. Kim, S. K. Kang, J. Song, D. W. Kim, S. Jang, I. Nam, P. S. Lee, S. H. Jeong. High-performance electrospun particulate matter (PM) filters embedded with self-polarizable tetragonal BaTiO3 nanoparticles. Chem. Eng. J. 2022, 450, 138340. https://doi.org/10.1016/j.cej.2022.138340
M. Kubin, P. Makreski, M. Zanoni, L. Gasperini, G. Selleri, D. Fabiani, C. Gualandi, A. Bužarovska. Effects of nano-sized BaTiO3 on microstructural, thermal, mechanical and piezoelectric behavior of electrospun PVDF/BaTiO3 nanocomposite mats. Polym. Test. 2023, 126, 108158. https://doi.org/10.1016/j.polymertesting.2023.108158
X. Wang, X. Gao, M. Li, S. Chen, J. Sheng, J. Yu. Synthesis of flexible BaTiO3 nanofibers for efficient vibration-driven piezocatalysis. Ceram. Int. 2021, 47, 25416. https://doi.org/10.1016/j.ceramint.2021.05.264
A. El Rahman, H. S. Metwally, N. Sabry, M. I. Mohammed. Gamma-ray shielding effectiveness, optical, mechanical, dielectric properties of nanofiller-reinforced PVA/PVP polymeric blend nanocomposites. Sci. Rep. 2024, 14, 27466. https://doi.org/10.1038/s41598-024-76397-8
K. Sreekanth, T. Siddaiah, N. O. Gopal, Y. Madhava Kumar, C. Ramu. Thermal, structural, optical and electrical conductivity studies of pure and Fe3+ ions doped PVP films for semoconducting polymer devices. Mater. Res. Innov. 2021, 25, 95. https://doi.org/10.1080/14328917.2020.1744346
R. Moriche, R. Donate, A. Otero, L. Santiago-Andrades, E. Monzón, M. J. Sayagués, M. Monzón, R. Paz. Processability and properties of cubic-BaTiO3/poly(vinylidene fluoride) composites for additive manufacturing: From powder compounding to 3D-printed parts. Polym. Compos. 2024, 46, 7346. https://doi.org/10.1002/pc.29434
H. Ye, H. Chen, X. Zhang, Y. Chen, W. Shao, L. Xu. Electron structure in modified BaTiO3/poly(vinylidenefluoride) nanocomposite with high dielectric property and energy density. IET Nanodielectr. 2019, 2, 70. https://doi.org/10.1049/iet-nde.2018.0029
M. Hirai, Y. Hagiwara, K. Takeuchi, R. Kimura, T. Onai, R. Kawai-Hirai, N. Tohta, M. Sugiyama. Thermal unfolding and refolding of protein under osmotic pressure clarified by wide-angle X-ray scattering. Thermochim. Acta. 2012, 532, 15. https://doi.org/10.1016/j.tca.2011.11.019
A. Bužarovska, M. Kubin, P. Makreski, M. Zanoni, L. Gasperini, G. Selleri, D. Fabiani, C. Gualandi. PVDF/BaTiO3 composite foams with high content of β phase by thermally induced phase separation (TIPS). J. Polym. Res. 2022, 29, 272. https://doi.org/10.1007/s10965-022-03133-z
M. Elmowafy, K. Shalaby, M. H. Elkomy, O. A. Alsaidan, H. A. M. Gomaa, M. A. Abdelgawad, E. M. Mostafa. Polymeric Nanoparticles for Delivery of Natural Bioactive Agents: Recent Advances and Challenges. Polym. 2023, 15, 1123. https://doi.org/10.3390/polym15051123
R. Moriche, R. Donate, A. Otero, L. Santiago-Andrades, E. Monzón, M. J. Sayagués, M. Monzón, R. Paz. Processability and properties of cubic-BaTiO3/poly(vinylidene fluoride) composites for additive manufacturing: From powder compounding to 3D-printed parts. Polym. Compos. 2024, 46, 7346. https://doi.org/10.1002/pc.29434
L. Yang, Q. Zhao, Y. Hou, R. Sun, M. Cheng, M. Shen, J. Qiu. High breakdown strength and outstanding piezoelectric performance in flexible PVDF based percolative nanocomposites through the synergistic effect of topological-structure and composition modulations. Compos. -A: Appl. Sci. Manuf. 2018, 114, 13. https://doi.org/10.1016/j.compositesa.2018.07.039
V. Fathollahzadeh, M. Khodaei, S. Emadi, K. Hajisharifi. Plasma-activated PVDF-BaTiO3 composite nanofiber scaffolds loaded with vancomycin for enhancing biocompatibility and piezoelectric response. Sci. Rep. 2025, 15, 28515. https://doi.org/10.1038/s41598-025-14391-4
S. Shalu, P. Kar, J. Krupka, B. Dasgupta Ghosh. Synthesis, characterization, thermal, dynamic mechanical, and dielectric studies of Ba0.7Sr0.3TiO3/polystyrene composites. Polym. Compos. 2018, 39, E1714. https://doi.org/10.1002/pc.24711
F. Deeba, K. Shrivastava, M. Bafna, A. Jain. Tuning of Dielectric Properties of Polymers by Composite Formation: The Effect of Inorganic Fillers Addition. J. Compos. Sci. 2022, 6, 355. https://doi.org/10.3390/jcs6120355
M. Serhan, M. Sprowls, D. Jackemeyer, M. Long, I. D. Perez, W. Maret, N. Tao, E. Forzani. Total iron measurement in human serum with a smartphone. In: 2019 AIChE Annual Meeting, Conference Proceedings. Amer. Inst. Chem. Eng. 2019, 8, 1-9. https://doi.org/10.1039/x0xx00000x
M. S. Zheng, C. Zhang, Y. Yang, Z. L. Xing, X. Chen, S. L. Zhong, Z. M. Dang. Improved dielectric properties of PVDF nanocomposites with core-shell structured BaTiO3@polyurethane nanoparticles. IET Nanodielectr. 2020, 3, 94. https://doi.org/10.1049/IET-NDE.2020.0015
R. Bo, J. Liu, C. Wang, Y. Wang, P. He, Z. Han. Molecular Dynamics Simulation on Structure and Dielectric Permittivity of BaTiO3/PVDF Composites. Adv. Polym. Technol. 2021, 1, 901. https://doi.org/10.1155/2021/9019580
Z. D. Liu, Y. Feng, W. L. Li. High Dielectric Constant and Low Loss of Polymeric Dielectric Composites Filled by Carbon Nanotubes Adhering BaTiO3 Hybrid Particles. RSC Advances 2015, 5, 29017. https://doi.org/10.1039/C5RA00639B
O. Okhay, A. Tkach. Current Achievements in Flexible Piezoelectric Nanogenerators Based on Barium Titanate. Nanomater. 2023, 13, 988. https://doi.org/10.3390/nano13060988
A. Mukherjee, B. Dasgupta Ghosh, S. Roy, K. Lim Goh. Ultra strong flexible Ba0.7Sr0.3Zr0.02Ti0.98O3/MWCNT/PVDF Nanocomposites: Pioneering material with remarkable energy storage for Self-Powered devices. Chem. Eng. J. 2024, 488, 151014. https://doi.org/10.1016/j.cej.2024.151014
A. Mukherjee, B. Dasgupta Ghosh. Synthesis of functionalized ZnO nanoflake loaded polyvinylidene fluoride composites with enhanced energy storage properties. Polym. Compos. 2023, 44, 2488. https://doi.org/10.1002/pc.27258
H. S. Mohanty, Ravikant, A. Kumar, P. K. Kulriya, R. Thomas, D. K. Pradhan. Dielectric/ferroelectric properties of ferroelectric ceramic dispersed poly(vinylidene fluoride) with enhanced β-phase formation. Mater. Chem. Phys. 2019, 230, 221. https://doi.org/10.1016/j.matchemphys.2019.03.055
J. Yan, Y. G. Jeong. High Performance Flexible Piezoelectric Nanogenerators based on BaTiO3 Nanofibers in Different Alignment Modes. ACS Appl. Mater. Interfaces 2016, 8, 15700. https://doi.org/10.1021/acsami.6b02177
P. Thakur, A. Kool, N. A. Hoque, B. Bagchi, F. Khatun, P. Biswas, D. Brahma, S. Roy, S. Banerjee, S. Das. Superior performances of in situ synthesized ZnO/PVDF thin film based self-poled piezoelectric nanogenerator and self-charged photo-power bank with high durability. Nano Energy 2018, 44, 456. https://doi.org/10.1016/j.nanoen.2017.11.065
N. R. Alluri, B. Saravanakumar, S. J. Kim. Flexible, hybrid piezoelectric film (BaTi(1- x)ZrxO3)/PVDF nanogenerator as a self-powered fluid velocity sensor. ACS Appl. Mater. Interfaces 2015, 7, 9831. https://doi.org/10.1021/acsami.5b01760
U. Yaqoob, A. S. M. I. Uddin, G. S. Chung. A novel tri-layer flexible piezoelectric nanogenerator based on surface- modified graphene and PVDF-BaTiO3 nanocomposites. Appl. Surf. Sci. 2017, 405, 420. https://doi.org/10.1016/j.apsusc.2017.01.314
X. Li, Y. Wang, Y. Rao, X. Ma, Y. Yang, J. Zhang. Enhanced Energy Storage in PVDF-Based Nanocomposite Capacitors through (00l)-Oriented BaTiO3 Single-Crystal Platelets. ACS Appl. Mater. Interfaces 2024, 16, 27785. https://doi.org/10.1021/acsami.4c04340
M. M. Alam, S. K. Ghosh, A. Sultana, D. Mandal. Lead-free ZnSnO3/MWCNTs-based self-poled flexible hybrid nanogenerator for piezoelectric power generation. Nanotechnol. 2015, 26, 165403. https://doi.org/10.1088/0957-4484/26/16/165403
U. Yaqoob, G. S. Chung. Effect of surface treated MWCNTs and BaTiO3 nanoparticles on the dielectric properties of a P(VDF-TrFE) matrix. J. Alloys. Compd. 2017, 695, 1231. https://doi.org/10.1016/j.jallcom.2016.10.250
A. Kumari, B. Dasgupta Ghosh. A study of dielectric behavior of manganese doped barium titanate–polyimide composites. Adv. Polym. Tech. 2018, 37, 2270. https://doi.org/10.1002/adv.21886
K. Shi, B. Chai, H. Zou, P. Shen, B. Sun, P. Jiang, Z. Shi, X. Huang. Interface induced performance enhancement in flexible BaTiO3/PVDF-TrFE based piezoelectric nanogenerators. Nano Energy 2021, 80, 105515. https://doi.org/10.1016/j.nanoen.2020.105515
K. Shi, B. Sun, X. Huang, P. Jiang. Synergistic effect of graphene nanosheet and BaTiO3 nanoparticles on performance enhancement of electrospun PVDF nanofiber mat for flexible piezoelectric nanogenerators. Nano Energy 2018, 52, 153. https://doi.org/10.1016/j.nanoen.2018.07.053
X. Guan, B. Xu, J. Gong. Hierarchically architected polydopamine modified BaTiO3@P(VDF-TrFE) nanocomposite fiber mats for flexible piezoelectric nanogenerators and self-powered sensors. Nano Energy 2020, 70, 104516. https://doi.org/10.1016/j.nanoen.2020.104516
U. Yaqoob, A. I. Uddin, G. S. Chung. A Novel Tri-Layer Flexible Piezoelectric Nanogenerator Based on Surface- Modified Graphene and PVDF-BaTiO3 Nanocomposites. Appl.Surf. Sci. 2017, 405, 420. https://doi.org/10.1016/j.apsusc.2017.01.314
N. P. M. J. Raj, N. R. Alluri, G. Khandelwal, S. J. Kim. Lead-Free Piezoelectric Nanogenerator Using Lightweight Composite Films for Harnessing Biomechanical Energy. Compos. B Eng. 2019, 161, 608. https://doi.org/10.1016/j.compositesb.2018.12.129
Z. H. Liu, C. T. Pan, L. W. Lin, J. C. Huang, Z. Y. Ou. Direct-Write PVDF Nonwoven Fiber Fabric Energy Harvesters via the Hollow Cylindrical near-Field Electrospinning Process. Smart Mater. Struct. 2014, 23, 025003. https://doi.org/10.1088/0964-1726/23/2/025003
N. R. Alluri, B. Saravanakumar, S. J. Kim. Flexible, Hybrid Piezoelectric Film (BaTi(1- x)ZrxO3)/PVDF Nanogenerator as a Self-Powered Fluid Velocity Sensor. ACS Appl. Mater. Interfaces 2015, 7, 9831. https://doi.org/10.1021/acsami.5b01760
X. Zhou, K. Parida, J. Chen, J. Xiong, Z. Zhou, F. Jiang, P. S. Lee. 3D printed auxetic structure‐assisted piezoelectric energy harvesting and sensing. Adv. Energy Mater. 2023, 13, 2301159. https://doi.org/10.1002/aenm.202301159
Y. K. Kim, S. H. Hwang, H. J. Seo, S. M. Jeong, S. K. Lim. Effects of biomimetic cross-sectional morphology on the piezoelectric properties of BaTiO3 nanorods-contained PVDF fibers. Nano Energy 2022, 97, 107216. https://doi.org/10.1016/j.nanoen.2022.107216
K. Kim, S. Lee, J. S. Nam, M. Joo, B. Mikladal, Q. Zhang, E. I. Kauppinen, I. Jeon, S. An. Highly transparent and mechanically robust energy‐harvestable piezocomposite with embedded 1D P(VDF‐TrFE) nanofibers and single‐walled carbon nanotubes. Adv. Funct. Mater. 2023, 33, 2213374. https://doi.org/10.1002/adfm.202213374