Proton Exchange Membrane Fuel Cells: A Sustainable Approach Towards Energy Generation Materials Science
Main Article Content
Abstract
Fuel cell technologies are on the verge of creating new milestones in energy conversion devices in the automobile, portable, and transportation sectors. This review article summarizes all types of fuel cells. Proton exchange membrane fuel cells (PEMFCs) have earned massive attention due to their high efficiency, light weight, rapid startup ability, low noise, and net-zero carbon emissions. The perfluorinated sulfonic acid-based membranes are the most utilized proton exchange membrane (PEM) materials; however, they have severe disadvantages. Henceforth, there is a noteworthy urge to develop alternative PEMs for PEMFC applications. The current research aims to design and develop alternative hydrocarbon-based membranes with improved properties and performance for PEMFC applications. This review starts with the essential components and the working principle of the PEMFC. Then, it explores the recent advances in various alternative sulfonated PEM materials for PEMFC applications, highlighting their synthetic process, PEM properties, and single-cell performances. Unlike a particular PEMFC-related topics review, this literature review emphasizes a comprehensive review of recent advances in the field of various types of hydrocarbon-based alternative sulfonated PEM materials, such as sulfonated polyamides, sulfonated poly(arylene ether)s, sulfonated poly(arylene thioether)s, sulfonated polybenzimidazoles, sulfonated polyimides, sulfonated poly(phenylene alkane)s, sulfonated polytriazoles, sulfonated polybenzothiazoles, sulfonated polyoxadiazoles, etc.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
A. E. Léodé, F. H. Agnimonhan, G. K. n’Gobi, B. Glinma, C. A. Kouchadé, B. Kounouhéwa. Review on the Proton Exchange Membrane Fuel Cell (PEMFC) in Benin Republic (West Africa). Res. J. Physical Sci., 2024, 12, 1. ISSN.;2320:4796.
A. Ajanovic, R. Haas. Prospects and impediments for hydrogen and fuel cell vehicles in the transport sector. Int. J. Hydrogen Energy, 2021, 46, 10049. https://doi.org/10.1016/j.ijhydene.2020.03.122
A. B. Ali, A. K. Nemah, Y. A. Al Bahadli. Principles and performance and types, advantages and disadvantages of fuel cells: A review. Case Stud. Chem. Environ. Eng., 2024, 10, 100920. https://doi.org/10.1016/j.cscee.2024.100920
B. P. Statistical Review of World Energy, 69th ed.; BP p.l.c.: London, UK, 2020; Available online: https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html (accessed on 30 August 2021)
B. Su, Y. Wang, Z. Xu, W. Han, H. Jin, H. Wang. Novel ways for hydrogen production based on methane steam and dry reforming integrated with carbon capture. Energy Convers. Manag., 2022, 270, 116199. https://doi.org/10.1016/j.enconman.2022.116199
Y. Yang, X. Yu, W. Zhu, C. Xie, B. Zhao, L. Zhang, Y. Shi, L. Huang, R. Zhang. Degradation prediction of proton exchange membrane fuel cells with model uncertainty quantification, Renew. Energy, 2023, 219, 119525. https://doi.org/10.1016/j.renene.2023.119525
Z. Xu, W. Xu, E. Stephens, B. Koeppel. Mechanical reliability and life prediction of coated metallic interconnects within solid oxide fuel cells. Renew. Energy, 2017, 113, 1472. https://doi.org/10.1016/j.renene.2017.06.103
Y. Zhou, R. Li, Z. Lv, J. Liu, H. Zhou, C. Xu. Green hydrogen: A promising way to the carbon-free society. Chin. J. Chem. Eng., 2022, 43, 2. https://doi.org/10.1016/j.cjche.2022.02.001
S. S. Kumar, H. Lim. An overview of water electrolysis technologies for green hydrogen production. Energy Rep., 2022, 8, 13793. https://doi.org/10.1016/j.egyr.2022.10.127
S. Li, M. Tabatabaei, F. Li, S.-H. Ho. A review of green biohydrogen production using anoxygenic photosynthetic bacteria for hydrogen economy: Challenges and opportunities. Int. J. Hydrogen Energy, 2024, 54, 218. https://doi.org/10.1016/j.ijhydene.2022.11.014
L. A. Omeiza, A. M. Abdalla, B. Wei, A. Dhanasekaran, Y. Subramanian, S. Afroze, M. S. Reza, S. A. Bakar, A. K. Azad. Nanostructured Electrocatalysts for Advanced Applications in Fuel Cells. Energies (Basel), 2023, 16, 1876. https://doi.org/10.3390/en16041876
M. C. Heller, G. A. Keoleian. Greenhouse Gas Emission Estimates of U.S. Dietary Choices and Food Loss. J. Ind. Ecol., 2015, 19, 391. https://doi.org/10.1111/jiec.12174
S. Li, X. Li, S.-H. Ho. How to enhance carbon capture by evolution of microalgal photosynthesis? Sep. Purif. Technol., 2022, 291, 120951. https://doi.org/10.1016/j.seppur.2022.120951
R. V. Vardhan, R. Mahalakshmi, R. Anand, A. Mohanty. A Review on Green Hydrogen: Future of Green Hydrogen in India, in: 2022 6th International Conference on Devices, Circuits and Systems (ICDCS), IEEE, 2022, 303. https://doi.org/10.1109/ICDCS54290.2022.9780805
A. Bajoria, J. Kanpariya, A. Bera. Greenhouse gases and global warming. In Advances and Technology Development in Greenhouse Gases: Emission, Capture and Conversion, Elsevier, 2024, 121. https://doi.org/10.1016/B978-0-443-19066-7.00006-0
M. Zavala-Méndez, A. Vargas, J. Carrillo-Reyes. Maximization of bio-hydrogen production from winery vinasses using on-line feedback control. Int. J. Hydrogen Energy, 2022, 47, 33259. https://doi.org/10.1016/j.ijhydene.2022.07.196
P. P. Edwards, V. L. Kuznetsov, W. I. F. David, N. P. Brandon. Hydrogen and fuel cells: Towards a sustainable energy future. Energy Policy, 2008, 36, 4356. https://doi.org/10.1016/j.enpol.2008.09.036
S. J. C. Cleghorn, D. K. Mayfield, D. A. Moore, J. C. Moore, G. Rusch, T. W. Sherman, N. T. Sisofo, U. Beuscher. A polymer electrolyte fuel cell life test: 3 years of continuous operation. J. Power Sources, 2006, 158, 446. https://doi.org/10.1016/j.jpowsour.2005.09.062
T. K. Maiti, J. Singh, P. Dixit, J. Majhi, S. Bhushan, A. Bandyopadhyay, S. Chattopadhyay. Advances in perfluorosulfonic acid-based proton exchange membranes for fuel cell applications: A review. Chem. Eng. J. Adv., 2022, 12, 100372. https://doi.org/10.1016/j.ceja.2022.100372
J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C. C. Chen, J. Gao, G. Li, Y. Yang. A polymer tandem solar cell with 10.6% power conversion efficiency. Nat. Commun., 2013, 4, 1446. https://doi.org/10.1038/ncomms2411
J. R. Kim, S. W. Choi, S. M. Jo, W.S. Lee, B. C. Kim. Electrospun PVdF-based fibrous polymer electrolytes for lithium-ion polymer batteries. Electrochim. Acta., 2004, 50, 69. https://doi.org/10.1016/j.electacta.2004.07.014
J. Xi, Z. Wu, X. Qiu, L. Chen. Nafion/SiO2 hybrid membrane for vanadium redox flow battery. J. Power Sources, 2007, 166, 531. https://doi.org/10.1016/j.jpowsour.2007.01.069
N. S. Rathore, N. L. Panwar. Renewable energy sources for sustainable development. New Delhi, India: New India Publishing Agency, 1996.
A. Hussain, S. M. Arif, M. Aslam. Emerging renewable and sustainable energy technologies: State of the art. Renew. Sustain. Energy Rev., 2017, 71, 12. https://doi,org/10.1016/j.rser.2016.12.033
N. L. Panwara, S. C. Kaushik, K. Surendra. Role of renewable energy sources in environmental protection: a review. Renew. Sustain. Energy Rev., 2011, 15, 1513. https://doi.org/10.1016/j.rser.2010.11.037
N. H. Ravindranath, D. O. Hall. Biomass, energy, and environment: a developing country perspective from India. Oxford, United Kingdom, Oxford University Press, 1995. https://doi.org/10.1093/oso/9780198564362.001.0001
H. Zhang, P. K. Shen. Advances in the high performance polymer electrolyte membranes for fuel cells. Chem. Soc. Rev., 2012, 41, 2382. https://doi.org/10.1039/c2cs15269j
O. M. Babatunde, B. D. Akintayo, M. U. Emezirinwune, O. A. Olanrewaju. Environmental impact assessment of a 1 kW proton-exchange membrane fuel cell: a mid-point and end-point analysis. Hydrogen, 2024, 5, 352. https://doi.org/10.3390/hydrogen5020020
O. Sel, A. Soules, B. Améduri, B. Boutevin, C. Laberty‐Robert, G. Gebel, C. Sanchez. Original fuel‐cell membranes from crosslinked terpolymers via a “sol–gel” strategy. Adv. Funct. Mater., 2010, 20, 1090. https://doi.org/10.1002/adfm.200902210
K. Jiao, J. Xuan, Q. Du, Z. Bao, B. Xie, B. Wang, Y. Zhao, L. Fan, H. Wang, Z. Hou, S. Huo, N.P. Brandon, Y. Yin, M. D. Guiver. Designing the next Generation of Proton-Exchange Membrane Fuel Cells. Nature, 2021, 595, 361. https://doi.org/10.1038/s41586-021-03482-7
W. Li, W. Liu, W. Jia, J. Zhang, Q. Zhang, Z. Zhang, J. Zhang, Y. Li, Y. Liu, H. Wang, Y. Xiang, S. Lu. Dual‐Proton Conductor for Fuel Cells with Flexible Operational Temperature. Adv. Mater., 2024, 36, 2310584. https://doi.org/10.1002/adma.202310584
U. Lucia. Overview on fuel cells. Renew. Sustain. Energy Rev., 2014, 30, 164. https://doi.org/10.1016/j.rser.2013.09.025
W. Vielstich, H. Gasteiger, A. Lamm. Handbook of Fuel cells—fundamentals, technology, applications. New York, Wiley, ISBN: 978-0-471-49926-8, 2003, 2720.
H. Davy. The collected works of Sir Humphry Davy...: Discourses delivered before the Royal society. Elements of agricultural chemistry, pt. I. Smith, Elder and Company, 1840.
R. Meldola, S. C. Friedrich. Ein Blatt zur Geschichte des 19 Jahrhunderts. Nature, 1900, 62, 97. https://doi.org/10.1038/062097a0
W. R. Grove. On a new voltaic combination. London and Edinburgh Philosophical Magazine, 1838,13, 430.
W. R. Grove. On a new voltaic combination of gasses by platinum. London and Edinburgh Philosophical Magazine, 1839, 14, 127. https://doi.org/10.1080/14786443908649684
J. M. Andújar, F. Segura. Fuel cells: history and updating. A walk along two centuries. Renew. Sustain. Energy Rev., 2009, 13, 2309. https://doi.org/10.1016/j.rser.2009.03.015
P. Grimes. Historical pathways for fuel cells. The new electric century. Proc. Annu. Batter. Conf. Appl. Adv., 2000, 41. https://doi.org/10.1109/BCAA.2000.838369
C. Spiegel. Designing and Building Fuel Cells, McGraw-Hill, New York, 2007.
M. L. Perry, T. F. Fuller. A Historical Perspective of Fuel Cell Technology in the 20th Century. J. Electrochem. Soc., 2002, 149, S59. https://doi.org/10.1149/1.1488651
S. Shamim, K. Sudhakar, B. Choudhary, J. Anwar. A review on recent advances in proton exchange membrane fuel cells: materials, technology and applications. Adv. Appl. Sci. Res., 2015, 6, 89, ISSN: 0976-8610.
B. C. H. Steele. Material science and engineering: The enabling technology for the commercialisation of fuel cell systems. J. Mater. Sci., 2001, 36, 1053. https://doi.org/10.1023/A:1004853019349
L. Mond, C. Langer. A new form of gas battery, communicated by Lord R.S. Rayleigihs. Proceedings of the Royal Society of London XLVI, 1889, 296–304.
A. Kirubakaran, S. Jain, R. K. Nema. A review on fuel cell technologies and power electronic interface. Renew. Sustain. Energy Rev., 2009, 13, 2430. https://doi.org/10.1016/j.rser.2009.04.004
H. Morikawa, H. Kikuchi, N. Saito. Development and advances of a V-flow FC tack for FCX clarity. SAE Tech. Pap., 2009, 2, 955. https://doi.org/10.4271/2009-01-1010
N. A. Qasem, G. A. Abdulrahman. A recent comprehensive review of fuel cells: history, types, and applications. Int. J. Energy Res., 2024, 2024, 7271748. https://doi.org/10.1155/2024/7271748
J. M. Andújar, F. Segura. Fuel cells: history and updating. A walk along two centuries. Renew. Sustain. Energy Rev., 2009, 13, 2309. https://doi.org/10.1016/j.rser.2009.03.015
L. Carrette, K. A. Friedrich, U. Stimming. Fuel cells: principles, types, fuels, and applications. ChemPhysChem, 2000, 1, 162. https://doi.org/10.1002/1439-7641(20001215)1:4<162::AIDCPHC162>3.0.CO;2-Z
R. E. Rosli, A. B. Sulong, W. R. W. Daud, M. A. Zulkifley, T. Husaini, M. I. Rosli, E. H. Majlan, M. A. Haque. A Review of High-Temperature Proton Exchange Membrane Fuel Cell (HTPEMFC) System. Int. J. Hydrogen Energy, 2017, 42, 9293. https://doi.org/10.1016/j.ijhydene.2016.06.211
S. Mekhilef, R. Saidur, A. Safari. Comparative study of different fuel cell technologies. Renew. Sustain. Energy Rev., 2012, 16, 981. https://doi.org/10.1016/j.rser.2011.09.020
R. Rath, P. Kumar, S. Mohanty, S. K. Nayak. Recent advances, unsolved deficiencies, and future perspectives of hydrogen fuel cells in transportation and portable sectors. Int. J. Energy Res., 2019, 43, 8931. https://doi.org/10.1002/er.4795
A. Javed, P. P. Gonzalez, V. Thangadurai. A critical review of electrolytes for advanced low-and high-temperature polymer electrolyte membrane fuel cells. ACS Appl. Mater. Interfaces, 2023, 15, 29674. https://doi.org/10.1021/acsami.3c02635
S. Bose, T. Kuila, T. X. Nguyen, N. H. Kim, K. T. Lau, J. H. Lee. Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges. Prog. Polym. Sci., 2011, 36, 813. https://doi.org/10.1016/j.progpolymsci.2011.01.003
J. Wang, B. Wang, C. Tongsh, T. Miao, P. Cheng, Z. Wang, Q. Du, K. Jiao. Combining proton and anion exchange membrane fuel cells for enhancing the overall performance and self-humidification. Chem. Eng. J., 2022, 428, 131969. https://doi.org/10.1016/j.cej.2021.131969
J. H. Wee. Applications of proton exchange membrane fuel cell systems. Renew. Sustain. Energy Rev., 2007, 11, 1720. https://doi.org/10.1016/j.rser.2006.01.005
L. Zhang, S. R. Chae, Z. Hendren, J. S. Park, M. R. Wiesner. Recent advances in proton exchange membranes for fuel cell applications. Chem. Eng. J., 2012, 204, 87. https://doi.org/10.1016/j.cej.2012.07.103
Z. Shang, R. Wycisk, P. Pintauro. Electrospun composite proton-exchange and anion-exchange membranes for fuel cells. Energies, 2021, 14, 6709. https://doi.org/10.3390/en14206709
A. K. Mohanty, E. A. Mistri, A. Ghosh, S. Banerjee. Synthesis and characterization of novel fluorinated poly (arylene ether sulfone)s containing pendant sulfonic acid groups for proton exchange membrane materials. J. Membr. Sci., 2012, 409, 145. https://doi.org/10.1016/j.memsci.2012.03.048
E. A. Mistri, A. K. Mohanty, S. Banerjee. Synthesis and characterization of new fluorinated poly(ether imide) copolymers with controlled degree of sulfonation for proton exchange membranes. J. Membr. Sci., 2012, 411, 117. https://doi.org/10.1016/j.memsci.2012.04.023
A. Singh, R. Mukherjee, S. Banerjee, H. Komber, B. Voit. Sulfonated polytriazoles from a new fluorinated diazide monomer and investigation of their proton exchange properties. J. Membr. Sci., 2014, 469, 225. https://doi.org/10.1016/j.memsci.2014.06.043
D. R. Dekel. Review of Cell Performance in Anion Exchange Membrane Fuel Cells. J. Power Sources, 2018, 375, 158. https://doi.org/10.1016/j.jpowsour.2017.07.117
M. M. Hossain, Z. Yang, L. Wu, X. Liang, T. Xu. Introducing a New Generation of Anion Conducting Membrane Using Swelling Induced Fabrication of Covalent Methanol Barrier Layer. J. Membr. Sci., 2021, 620, 118840. https://doi.org/10.1016/j.memsci.2020.118840
Y. Zha, M. L. Disabb-Miller, Z. D. Johnson, M. A. Hickner, G. N. Tew. Metal-Cation-Based Anion Exchange Membranes. J. Am. Chem. Soc., 2012, 134, 4493. https://doi.org/10.1021/ja211365r
R. Mukherjee, S. Banerjee, H. Komber, B. Voit. Carboxylic acid functionalized fluorinated sulfonated poly (arylene ether sulfone) copolymers with enhanced oxidative stability. J. Membr. Sci., 2016, 510, 497. https://doi.org/10.1016/j.memsci.2016.03.028
Y. Xue, L. Shi, X. Liu, J. Fang, X. Wang, B. P. Setzler, W. Zhu, Y. Yan, Z. Zhuang. A highly active, stable, and low-cost platinum-free anode catalyst based on RuNi for hydroxide exchange membrane fuel cells. Nat. Commun., 2020, 11, 5651. https://doi.org/10.1038/s41467-020-19413-5
D. Henkensmeier, M. Najibah, C. Harms, J. Žitka, J. Hnát, K. Bouzek. Overview: State-of-the-Art Commercial Membranes for Anion Exchange Membrane Water Electrolysis. J. Electrochem. Energy Convers. Storage, 2020, 18, 024001. https://doi.org/10.1115/1.4047963
J. R. Varcoe, P. Atanassov, D. R. Dekel, A. M. Herring, M. A. Hickner, P. A. Kohl, A. R. Kucernak, W. E. Mustain, K. Nijmeijer, K. Scott, T. Xu. Anion-Exchange Membranes in Electrochemical Energy Systems. Energy Environ. Sci., 2014, 7, 3135. https://doi.org/10.1039/C4EE01303D
Amel, A.; Smedley, S.B.; Dekel, D.R.; Hickner, M.A.; Ein-Eli, Y. Characterization and Chemical Stability of Anion Exchange Membranes Cross-Linked with Polar Electron-Donating Linkers. J. Electrochem. Soc., 2015, 162, F1047. https://doi.org/10.1149/2.0891509jes
D. R. Dekel, M. Amar, S. Willdorf, M. Kosa, S. Dhara, C. E. Diesendruck. Effect of Water on the Stability of Quaternary Ammonium Groups for Anion Exchange Membrane Fuel Cell Applications. Chem. Mater., 2017, 29, 4425. https://doi.org/10.1021/acs.chemmater.7b00958
Z. Tao, C. Wang, X. Zhao, J. Li, M. D. Guiver. Progress in high‐performance anion exchange membranes based on the design of stable cations for alkaline fuel cells. Adv. Mater. Technol., 2021, 6, 2001220. https://doi.org/10.1002/admt.202001220
G. Couture, A. Alaaeddine, F. Boschet, B. Ameduri. Polymeric materials as anion-exchange membranes for alkaline fuel cells. Prog. Polym. Sci., 2011, 36, 1521. https://doi.org/10.1016/j.progpolymsci.2011.04.004
W. E. Mustain, M. Chatenet, M. Page, Y. S. Kim. Durability challenges of anion exchange membrane fuel cells. Energy Environ. Sci., 2020, 13, 2805. https://doi.org/10.1039/D0EE01133A
Y. Prykhodko, K. Fatyeyeva, L. Hespel, S. Marais. Nafion®-based membranes for proton exchange fuel cell application. Chem. Eng. J., 2021, 409, 127329. https://doi.org/10.1016/j.cej.2020.127329
M. J. Workman, A. Serov, L. Tsui, P. Atanassov, K. Artyushkova. Fe–N–C Catalyst Graphitic Layer Structure and Fuel Cell Performance. ACS Energy Lett., 2017, 2, 1489. https://doi.org/10.1021/acsenergylett.7b00391
J. Wang, Y. Zhao, B. P. Setzler, S. Rojas-Carbonell, C. B. Yehuda, A. Amel, M. Page, L. Wang, K. Hu, L. Shi, S. Gottesfeld, B. Xu, Y. Yan. Poly(aryl piperidinium) membranes and ionomers for hydroxide exchange membrane fuel cells. Nat. Energy, 2019, 4, 392. https://doi.org/10.1038/s41560-019-0372-8
X. Wu, S. Xing, J. Luo, H. Wang, F. Huang, C. Zhao. Progress and Challenges on Air-cooled Open-cathode Proton Exchange Membrane Fuel Cells: Materials, Structures, and Systems. Energy Rev., 2025, 4, 100130. https://doi.org/10.1016/j.enrev.2025.100130
A. Singh, S. Banerjee, H. Komber, B. Voit. Synthesis and characterization of highly fluorinated sulfonated polytriazoles for proton exchange membrane application. RSC advances, 2016, 6, 13478. https://doi.org/10.1039/C5RA26821D
B. Campagne, G. David, B. Améduri, D. J. Jones, J. Rozière, I. Roche. Novel blend membranes of partially fluorinated copolymers bearing azole functions with sulfonated PEEK for PEMFC operating at low relative humidity: influence of the nature of the N-heterocycle. Macromolecules, 2013, 46, 3046. https://doi.org/10.1021/ma400239f
B. Ghanti, R. Kamble, S. Roy, S. Banerjee. Synthesis and characterization of sulfonated polytriazoles utilizing 1, 4‐bis (4‐azido‐2‐(trifluoromethyl) phenoxy) benzene for the proton exchange membrane applications. J. Polym. Sci., 2023, 61, 1792. https://doi.org/10.1002/pol.20220769
H. Pourrahmani, C. M. Bernier, J. Van Herle. The application of fuel-cell and battery technologies in unmanned aerial vehicles (UAVs): a dynamic study. Batteries, 2022, 8, 73. https://doi.org/10.3390/batteries8070073
Y. Liu, H. Ma, Y. Tong, A. Uma, Y. Luo, S. Zhao. Progress of Polyhedral Oligomeric Silsesquioxanes in Proton Exchange Membrane Fuel Cells: A Review. Process. Saf. Environ. Prot., 2024, 187, 1322. https://doi.org/10.1016/j.psep.2024.05.057
X. Z. Yuan, C. Nayoze-Coynel, N. Shaigan, D. Fisher, N. Zhao, N. Zamel, P. Gazdzicki, M. Ulsh, K. A. Friedrich, F. Girard, U. Groos. A review of functions, attributes, properties and measurements for the quality control of proton exchange membrane fuel cell components. J. Power Sources, 2021, 491, 229540. https://doi.org/10.1016/j.jpowsour.2021.229540
Y. Wang, D. F. Ruiz Diaz, K. S. Chen, Z. Wang, X. C. Adroher. Materials, Technological Status, and Fundamentals of PEM Fuel Cells – A Review. Mater. Today, 2020, 32, 178. https://doi.org/10.1016/j.mattod.2019.06.005
Y. Sun, S. Polani, F. Luo, S. Ott, P. Strasser, F. Dionigi. Advancements in cathode catalyst and cathode layer design for proton exchange membrane fuel cells. Nat. Commun., 2021, 12, 5984. https://doi.org/10.1038/s41467-021-25911-x
D. Wu, C. Peng, C. Yin, H. Tang. Review of system integration and control of proton exchange membrane fuel cells. Electrochem. Energy Rev., 2020, 3, 466. https://doi.org/10.1007/s41918-020-00068-1
B. Smitha, S. Sridhar, A. A. Khan. Solid polymer electrolyte membranes for fuel cell applications—a review. J. Membr. Sci., 2005, 259, 10. https://doi.org/10.1016/j.memsci.2005.01.035
A. G. Kumar, A. Singh, H. Komber, B. Voit, B. R. Tiwari, M. T. Noori, M. M. Ghangrekar, S. Banerjee. Novel sulfonated Co-poly(ether imide)s containing trifluoromethyl, fluorenyl and hydroxyl groups for enhanced proton exchange membrane properties: Application in microbial fuel cell. ACS Appl. Mater. Interfaces, 2018, 10, 14803. https://doi.org/10.1021/acsami.8b03452
A. Ghorai, S. Banerjee. Phosphorus-containing aromatic polymers: Synthesis, structure, properties and membrane-based applications. Prog. Polym. Sci., 2023, 138, 101646. https://doi.org/10.1016/j.progpolymsci.2023.101646
E. Qu, X. Hao, M. Xiao, D. Han, S. Huang, Z. Huang, S. Wang, Y. Meng. Proton exchange membranes for high temperature proton exchange membrane fuel cells: Challenges and perspectives. J. Power Sources, 2022, 533, 231386. https://doi.org/10.1016/j.jpowsour.2022.231386
H. Pourrahmani, A. Yavarinasab, M. Siavashi, M. Matian. Progress in the proton exchange membrane fuel cells (PEMFCs) water/thermal management: From theory to the current challenges and real-time fault diagnosis methods. Energy Rev., 2022, 1, 100002. https://doi.org/10.1016/j.enrev.2022.100002
J. Fan, M. Chen, Z. Zhao, Z. Zhang, S. Ye, S. Xu, H. Wang, H. Li. Bridging the gap between highly active oxygen reduction reaction catalysts and effective catalyst layers for proton exchange membrane fuel cells. Nat. Energy, 2021, 6, 475. https://doi.org/10.1038/s41560-021-00824-7
A. Kusoglu, A. Z. Weber. New insights into perfluorinated sulfonic-acid ionomers. Chem. Rev., 2017, 117, 987. https://doi.org/10.1021/acs.chemrev.6b00159
B. Ghanti, R. Kamble, H. Komber, B. Voit, S. Banerjee. High proton-conducting phosphine oxide-and pyridinyl-based fluoro-sulfonated proton exchange membranes with enhanced chemical stability. J. Power Sources, 2025, 631, 236201. https://doi.org/10.1016/j.jpowsour.2025.236201
Z. Li, Y. Wang, Y. Mu, B. Wu, Y. Jiang, L. Zeng, T. Zhao. Recent advances in the anode catalyst layer for proton exchange membrane fuel cells. Renew. Sustain. Energy Rev., 2023, 176, 113182. https://doi.org/10.1016/j.rser.2023.113182
A. K. Mandal, S. Bisoi, S. Banerjee. Effect of phosphaphenanthrene skeleton in sulfonated polyimides for proton exchange membrane application. ACS Appl. Polym. Mater., 2019, 1, 893. https://doi.org/10.1021/acsapm.9b00128
B. Ghanti, S. Banerjee. Fluorine-Free Sulfonated Poly (sulfone triazole) s with a Pendant Phosphaphenanthrene Moiety for Proton Exchange Membrane Applications. Macromolecules, 2025. https://doi.org/10.1021/acs.macromol.5c00277
Z. Rui, J. Liu. Understanding of free radical scavengers used in highly durable proton exchange membranes. Prog. Nat. Sci.: Mater. Int., 2020, 30, 732. https://doi.org/10.1016/j.pnsc.2020.08.013
B. Ghanti, R. Kamble, H. Komber, B. Voit, S. Banerjee. Synergistically Functionalized Pyridinyl-and Phosphine-Oxide-Based Semifluoro-Sulfonated Copolytriazole Membrane Preparation via “Click” Polymerization for Proton Exchange Membrane Applications. Macromolecules, 2024, 57, 4584. https://doi.org/10.1021/acs.macromol.4c00050
S. Roy, B. Ghanti, D. Ghosh, D. Pradhan, B. Voit, S. Banerjee. Sterically Hindered Pyridine-Linked Sulfonated Polytriazoles: Fabrication of Membranes and Investigation of Single Fuel Cell Performance. ACS Appl. Polym. Mater., 2022, 4, 7450. https://doi.org/10.1021/acsapm.2c01189
B. Date, J. Han, S. Park, E. J. Park, D. Shin, C. Y. Ryu, C. Bae. Synthesis and morphology study of SEBS triblock copolymers functionalized with sulfonate and phosphonate groups for proton exchange membrane fuel cells. Macromolecules, 2018, 51, 1020. https://doi.org/10.1021/acs.macromol.7b01848
A. Abdolmaleki, K. Eskandari, M. R. Molavian. Sulfonated or phosphonated membranes? DFT investigation of proton exchange in poly (oxadiazole) membranes. Polymer, 2016, 87, 181. https://doi.org/10.1016/j.polymer.2016.02.011
S. Bano, Y. S. Negi, K. Ramya. Studies on new highly phosphonated poly (ether ketone) based promising proton conducting membranes for high temperature fuel cell. Int. J. Hydrogen Energy, 2019, 44, 28968. https://doi.org/10.1016/j.ijhydene.2019.09.067
T. Wei, Y. Zhao, Z. Ren, Y. Han, H. Zhang, Z. Shao. Facile and affordable synthesis of sulfonated and phosphonated poly (p-terphenyl perfluorophenyl) s for proton exchange membrane fuel cells. Next Sustainability, 2024, 3, 100021. https://doi.org/10.1016/j.nxsust.2023.100021
J. Parvole, P. Jannasch. Polysulfones grafted with poly (vinylphosphonic acid) for highly proton conducting fuel cell membranes in the hydrated and nominally dry state. Macromolecules, 2008, 41, 3893. https://doi.org/10.1021/ma800042m
N. Y. Abu-Thabit, S. A. Ali, S. J. Zaidi. New highly phosphonated polysulfone membranes for PEM fuel cells. J. Membr. Sci., 2010, 360, 26. https://doi.org/10.1016/j.memsci.2010.04.041
H. Tang, K. Geng, Y. Hu, N. Li. Synthesis and properties of phosphonated polysulfones for durable high-temperature proton exchange membranes fuel cell. J. Membr. Sci., 2020, 605, 118107. https://doi.org/10.1016/j.memsci.2020.118107
M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla, J. E. McGrath. Alternative polymer systems for proton exchange membranes (PEMs). Chem. Rev., 2004, 104, 4587. https://doi.org/10.1021/cr020711a
A. Ghorai, S. Roy, S. Das, H. Komber, M. M. Ghangrekar, B. Voit, S. Banerjee. Chemically stable sulfonated polytriazoles containing trifluoromethyl and phosphine oxide moieties for proton exchange membranes. ACS Appl. Polym. Mater., 2020, 2, 2967. https://doi.org/10.1021/acsapm.0c00443
T. Higashihara, K. Matsumoto, M. Ueda. Sulfonated aromatic hydrocarbon polymers as proton exchange membranes for fuel cells. Polymer, 2009, 50, 5341. https://doi.org/10.1016/j.polymer.2009.09.001
S. M. Ibrahim, E. H. Price, R. A. Smith. EI duPont de Nemours. Proc. Electrochem. Soc., 1983, 83.
R. Kamble, A. Ghorai, B. Ghanti, D. Pradhan, S. Banerjee. Fabrication of high proton conducting composite membranes from amino group functionalized MOF and semi-fluorinated sulfonated poly (arylene ether sulfone)s. Eur. Polym. J., 2022, 179, 111574. https://doi.org/10.1016/j.eurpolymj.2022.111574
Z. Cui, E. Drioli, Y. M. Lee. Recent progress in fluoropolymers for membranes. Prog. Polym. Sci., 2014, 39, 164. https://doi.org/10.1016/j.progpolymsci.2013.07.008
K. D. Kreuer. Ion conducting membranes for fuel cells and other electrochemical devices. Chem. Mater., 2014, 26, 361. https://doi.org/10.1021/cm402742u
M. G. Dhara, S. Banerjee. Fluorinated high-performance polymers: Poly(arylene ether)s and aromatic polyimides containing trifluoromethyl groups. Prog. Polym. Sci., 2010, 35, 1022. https://doi.org/10.1016/j.progpolymsci.2010.04.003
K. H. Lee, J. Y. Chu, A. R. Kim, D. J. Yoo. Facile fabrication and characterization of improved proton conducting sulfonated poly (arylene biphenylether sulfone) blocks containing fluorinated hydrophobic units for proton exchange membrane fuel cell applications. Polymers, 2018, 10, 1367. https://doi.org/10.3390/polym10121367
R. Devanathan. Recent developments in proton exchange membranes for fuel cells. Energy Environ. Sci., 2008, 1, 101. https://doi.org/10.1039/b808149m
M. Kim, H. Ko, S. Y. Nam, K. Kim. Study on control of polymeric architecture of sulfonated hydrocarbon-based polymers for high-performance polymer electrolyte membranes in fuel cell applications. Polymers, 2021, 13, 3520. https://doi.org/10.3390/polym13203520
S. H. Mirfarsi, M. J. Parnian, S. Rowshanzamir, E. Kjeang. Current status of cross-linking and blending approaches for durability improvement of hydrocarbon-based fuel cell membranes. Int. J. Hydrogen Energy, 2022, 47, 13460. https://doi.org/10.1016/j.ijhydene.2022.02.077
C. H. Park, C. H. Lee, M. D. Guiver, Y. M. Lee. Sulfonated hydrocarbon membranes for medium-temperature and low-humidity proton exchange membrane fuel cells (PEMFCs). Prog. Polym. Sci., 2011, 36, 1443. https://doi.org/10.1016/j.progpolymsci.2011.06.001
H. Hou, M. L. Di Vona, P. Knauth. Durability of sulfonated aromatic polymers for proton‐exchange‐membrane fuel cells. ChemSusChem, 2011, 4, 1526. https://doi.org/1002/cssc.201000415
L. Fu, G. Xiao, D. Yan. Sulfonated poly(arylene ether sulfone) s with phosphine oxide moieties: a promising material for proton exchange membranes. ACS Appl. Mater. Interfaces, 2010, 2, 1601. https://doi.org/10.1021/am1000739
J. Miyake, M. Watanabe, K. Miyatake. Sulfonated poly (arylene ether phosphine oxide ketone) block copolymers as oxidatively stable proton conductive membranes. ACS Appl. Mater. Interfaces, 2013, 5, 5903. https://doi.org/10.1021/am401625j
K. Umezawa, T. Oshima, M. Yoshizawa-Fujita, Y. Takeoka, M. Rikukawa. Synthesis of hydrophilic–hydrophobic block copolymer ionomers based on polyphenylenes. ACS Macro. Lett., 2012, 1, 969. https://doi.org/10.1021/mz300290x
K. Si, R. Wycisk, D. Dong, K. Cooper, M. Rodgers, P. Brooker, D. Slattery, M. Litt. Rigid-rod poly (phenylenesulfonic acid) proton exchange membranes with cross-linkable biphenyl groups for fuel cell applications. Macromolecules, 2013, 46, 422. https://doi.org/10.1021/ma301875n
A. K. Mandal, A. Ghorai, S. Banerjee. Sulphonated polysilsesquioxane–polyimide composite membranes: proton exchange membrane properties. Bull. Mater. Sci., 2020, 43, 1. https://doi.org/10.1007/s12034-020-02158-8
J. L. Jespersen, E. Schaltz, S. K. Kær. Electrochemical characterization of a polybenzimidazole-based high temperature proton exchange membrane unit cell. J. Power Sources, 2009, 191, 289. https://doi.org/10.1016/j.jpowsour.2009.02.025
J. Yang, H. Jiang, L. Gao, J. Wang, Y. Xu, R. He. Fabrication of crosslinked polybenzimidazole membranes by trifunctional crosslinkers for high temperature proton exchange membrane fuel cells. Int. J. Hydrogen Energy, 2018, 43, 3299. https://doi.org/10.1016/j.ijhydene.2017.12.141
Y. J. Huang, Y. S. Ye, Y. C. Yen, L. D. Tsai, B. J. Hwang, F. C. Chang. Synthesis and characterization of new sulfonated polytriazole proton exchange membrane by click reaction for direct methanol fuel cells (DMFCs). Int. J. Hydrogen Energy, 2011, 36, 15333. https://doi.org/10.1016/j.ijhydene.2011.08.093
S. Saha, S. Banerjee, H. Komber, B. Voit. Flexible diazide based sulfonated polytriazoles and their proton exchange membrane properties. Macromol. Chem. Phys., 2017, 218, 1700070. https://doi.org/10.1002/macp.201700070
F. Liu, D. M. Knauss. Sulfonated poly (meta‐phenylene isophthalamide)s as proton exchange membranes. J. Polym. Sci. Part A: Polym. Chem., 2016, 54, 2582. https://doi.org/10.1002/pola.28136
Q. Yuan, P. Liu, G. L. Baker. Sulfonated polyimide and PVDF-based blend proton exchange membranes for fuel cell applications. J. Mater. Chem. A, 2015, 3, 3847. https://doi.org/10.1039/C4TA04910A
J. Fang, X. Guo, S. Harada, T. Watari, K. Tanaka, H. Kita, K. I. Okamoto. Novel sulfonated polyimides as polyelectrolytes for fuel cell application. 1. Synthesis, proton conductivity, and water stability of polyimides from 4, 4 ‘-diaminodiphenyl ether-2, 2‘-disulfonic acid. Macromolecules, 2002, 35, 9022. https://doi.org/10.1021/ma020005b
J. M. García, F. C. García, F. Serna, J. L. de la Peña. High-performance aromatic polyamides. Prog. Polym. Sci., 2010, 35, 623. https://doi.org/10.1016/j.progpolymsci.2009.09.002
P. W. Morgan. Synthesis and properties of aromatic and extended chain polyamides. Macromolecules, 1977, 10, 1381. https://doi.org/10.1021/ma60060a040
C. C. Lin, W. F. Lien, Y. Z. Wang, H. W. Shiu, C. H. Lee. Preparation and performance of sulfonated polyimide/Nafion multilayer membrane for proton exchange membrane fuel cell. J. Power Sources, 2012, 200, 1. https://doi.org/10.1016/j.jpowsour.2011.10.001
A. Ghosh, S. K. Sen, S. Banerjee, B. Voit. Solubility improvements in aromatic polyimides by macromolecular engineering. RSC advances, 2012, 2, 5900. https://doi.org/10.1039/C2RA20175E
S. Maji, S. Banerjee. Synthesis, characterization, and properties of novel fluorine containing aromatic polyamides. J. Appl. Polym. Sci., 2008, 108, 1356. https://doi.org/10.1002/app.27831
N. Yamazaki, F. Higashi. Studies on reactions of the N-phosphonium salts of pyridines—VII: Preparation of peptides and active esters of amino acids by means of diphenyl and triphenyl phosphites in the presence of tertiary amines. Tetrahedron, 1974, 30, 1323. https://doi.org/10.1016/S0040-4020(01)97242-4
T. S. Jo, C. H. Ozawa, B. R. Eagar, L. V. Brownell, D. Han, C. Bae. Synthesis of sulfonated aromatic poly (ether amide)s and their application to proton exchange membrane fuel cells. J. Polym. Sci. Part A: Polym. Chem., 2009, 47, 485. https://doi.org/10.1002/pola.23165
H. A. Every, G. J. Janssen, E. F. Sitters, E. Mendes, S. J. Picken. Performance analysis of sulfonated PPTA polymers as potential fuel cell membranes. J. Power Sources, 2006, 162, 380. https://doi.org/10.1016/j.jpowsour.2006.07.002
Y. Pérez-Padilla, M. A. Smit, M. J. Aguilar-Vega. Preparation and characterization of sulfonated copolyamides based on poly (hexafluoroisopropylidene) isophthalamides for polymer electrolytic membranes. Ind. Eng. Chem. Res., 2011, 50, 9617. https://doi.org/10.1021/ie102409d
Y. Chang, Y. B. Lee, C. Bae. Partially fluorinated sulfonated poly (ether amide) fuel cell membranes: influence of chemical structure on membrane properties. Polymers, 2011, 3, 222. https://doi.org/10.3390/polym3010222
C. Wang, B. Shen, Y. Zhou, C. Xu, W. Chen, X. Zhao, J. Li. Sulfonated aromatic polyamides containing nitrile groups as proton exchange fuel cell membranes. Int. J. Hydrogen Energy, 2015, 40, 6422. https://doi.org/10.1016/j.ijhydene.2015.03.078
R. Sulub-Sulub, M. I. Loría-Bastarrachea, M. O. González-Díaz, M. Aguilar-Vega. Synthesis and characterization of block sulfonated amphiphilic aromatic copolyamides for cation conductive membranes. Polym. Bull., 2023, 80, 429. https://doi.org/10.1007/s00289-022-04093-6
D. S. Kim, G. P. Robertson, Y. S. Kim, M. D. Guiver. Copoly(arylene ether)s containing pendant sulfonic acid groups as proton exchange membranes. Macromolecules, 2009, 42, 957. https://doi.org/10.1021/ma802192y
R. Mukherjee, S. Banerjee, H. Komber, B. Voit. Highly proton conducting fluorinated sulfonated poly (arylene ether sulfone) copolymers with side chain grafting. RSC Advances, 2014, 4, 46723. https://doi.org/10.1039/C4RA07291J
N. Li, D. W. Shin, D. S. Hwang, Y. M. Lee, M. D. Guiver. Polymer electrolyte membranes derived from new sulfone monomers with pendent sulfonic acid groups. Macromolecules, 2010, 43, 9810. https://doi.org/10.1021/ma102107a
R. N. Johnson, A. G. Farnham, R. A. Clendinning, W. F. Hale, C. N. Merriam. Poly(aryl ethers) by nucleophilic aromatic substitution. I. Synthesis and properties. J. Polym. Sci. Part A: Polym. Chem., 1967, 5, 2375. https://doi.org/10.1002/pol.1967.150050916
F. Wang, M. Hickner, Q. Ji, W. Harrison, J. Mecham, T. A. Zawodzinski, J. E. McGrath. Synthesis of highly sulfonated poly(arylene ether sulfone) random (statistical) copolymers via direct polymerization. Macromol. Symp., 2001, 175, 387. https://doi.org/10.1002/1521-3900(200110)175:1<387::AID-MASY387>3.0.CO;2-1
F. Wang, M. Hickner, Y. S. Kim, T. A. Zawodzinski, J. E. McGrath. Direct polymerization of sulfonated poly(arylene ether sulfone) random (statistical) copolymers: candidates for new proton exchange membranes. J. Membr. Sci., 2002, 197, 231. https://doi.org/10.1016/S0376-7388(01)00620-2
C. Wang, D. W. Shin, S. Y. Lee, N. R. Kang, Y. M. Lee, M. D. Guiver. Poly(arylene ether sulfone) proton exchange membranes with flexible acid side chains. J. Membr. Sci., 2012, 405, 68. https://doi.org/10.1016/j.memsci.2012.02.045
M. Oroujzadeh, S. Mehdipour-Ataei. Highly fluorinated poly(arylene ether)s containing sulfonated naphthol pendants with improved proton conductivity as a polymer electrolyte for proton exchange membrane fuel cells. Renew. Energy, 2025, 240, 122298. https://doi.org/10.1016/j.renene.2024.122298
L. Meng, M. Ju, J. Xu, X. Chen, P. Zhao, J. Lei, T. Lan, F. Chen, Z. Hu, Z. Wang. Achieving high efficient proton transport in sulfonated poly(arylene ether ketone sulfone)s containing fluorenyl groups by introducing bifunctionalized metal-organic frameworks. Int. J. Hydrogen Energy, 2023, 48, 40000. https://doi.org/10.1016/j.ijhydene.2023.07.148
J. Lei, L. Meng, P. Zhao, J. Wang, T. Lan, J. Xu. A simple strategy for synthesis of side-chain sulfonated poly(arylene ether ketone sulfone) constructing hydrophilic/hydrophobic phase separation structure. J. Polym. Res., 2024, 31, 52. https://doi.org/10.1007/s10965-024-03894-9
Z. Zhao, D. Liu, J. Zhong, J. Li, Z. Lin, Z. Zhao, J. Pang. Poly(aryl ether sulfone ketone) with densely sulfonated structural units facilitate microphase separation to promote proton transport. J. Membr. Sci., 2024, 693, 122319. https://doi.org/10.1016/j.memsci.2023.122319
X. Dong, H. Li, J. Xu, X. Wang, S. Wang, Y. Yin, C. L. Song, T. Lan, Z. Wang, Y. W. Yang. Cross-Linking of Bromo-Pillar-[5]-arenes and Sulfonated Poly(Aryl Ether Ketone Sulfone) Enhances Proton Conductivity of Membranes at Low Ion Exchange Capacity. ACS mater. lett., 2024, 6, 4962. https://doi.org/10.1021/acsmaterialslett.4c01980
Y. Tan, K. Zhang, H. Liao, G. Xiao, Y. Yao, G. Sun, D. Yan. Trisulfonation approach: To improve the properties of poly (arylene thioether phosphine oxide)s based proton exchange membranes. J. Membr. Sci., 2016, 508, 32. https://doi.org/10.1016/j.memsci.2016.02.020
C. Allam, K. J. Liu, J. E. McGrath, D. K. Mohanty. Preparation and properties of novel aromatic poly (thioethers) derived from 4, 4′‐thiobisbenzenethiol. Macromol. Chem. Phys., 1999, 200, 1854. https://doi.org/10.1002/(SICI)1521-3935(19990801)200:8<1854::AID-MACP1854>3.0.CO;2-9
S. J. Rodrigues, T. L. Reitz, T. D. Dang, Z. Bai, K. Bardua. Polyarylenethioethersulfone membranes for fuel cells. J. Electrochem. Soc., 2007, 154, B960. https://doi.org/10.1149/1.2755881
Z. Bai, M. F. Durstock, T. D. Dang. Proton conductivity and properties of sulfonated polyarylenethioether sulfones as proton exchange membranes in fuel cells. J. Membr. Sci., 2006, 281, 508. https://doi.org/10.1016/j.memsci.2006.04.021
K. B. Wiles, F. Wang, J. E. McGrath. Directly copolymerized poly(arylene sulfide sulfone) disulfonated copolymers for PEM‐based fuel cell systems. I. Synthesis and characterization. J. Polym. Sci. Part A: Polym. Chem., 2005, 43, 2964. https://doi.org/10.1002/pola.20744
X. Ma, L. Shen, C. Zhang, G. Xiao, D. Yan, G. Sun. Sulfonated poly(arylene thioether phosphine oxide)s copolymers for proton exchange membrane fuel cells. J. Membr. Sci., 2008, 310, 303. https://doi.org/10.1016/j.memsci.2007.11.003
A. Kausar, S. Zulfiqar, M. I. Sarwar. Recent developments in sulfur-containing polymers. Polym. Rev., 2014, 54, 185. https://doi.org/10.1080/15583724.2013.863209
S. J. Wang, Y. Z. Meng, A, R. Hlil, A. S. Hay. Synthesis and characterization of phthalazinone containing poly(arylene ether)s, poly(arylene thioether)s, and poly(arylene sulfone)s via a novel N− C coupling reaction. Macromolecules, 2004, 37, 60. https://doi.org/10.1021/ma030246z
J. P. Kim, W. Y. Lee, J. W. Kang, S. K. Kwon, J. J. Kim, J. S. Lee. Fluorinated poly (arylene ether sulfide) for polymeric optical waveguide devices. Macromolecules, 2001, 34, 7817. https://doi.org/10.1021/ma010439r
H. S. Chan, S. C. Ng. Synthesis, characterization and applications of thiophene-based functional polymers. Prog. Polym. Sci., 1998, 23, 1167. https://doi.org/10.1016/S0079-6700(97)00032-4
S. Matsumura, N. Kihara, T. Takata. Properties of a few aromatic poly (thioether ketones) as sulfur‐containing high‐performance polymers. J. Appl. Polym. Sci., 2004, 92, 1869. https://doi.org/10.1002/app.20169
Z. Bai, J. A. Shumaker, M. D. Houtz, P. A. Mirau, T. D. Dang. Fluorinated poly(arylenethioethersulfone) copolymers containing pendant sulfonic acid groups for proton exchange membrane materials. Polymer, 2009, 50, 1463. https://doi.org/10.1016/j.polymer.2009.01.028
L. Gui, C. Zhang, S. Kang, N. Tan, G. Xiao, D. Yan. Synthesis and properties of hexafluoroisopropylidene-containing sulfonated poly(arylene thioether phosphine oxide)s for proton exchange membranes. Int. J. Hydrogen Energy, 2010, 35, 2436. https://doi.org/10.1016/j.ijhydene.2009.12.137
J. Hou, S. Liu, X. Sun, Z. Xiao, H. Ding. Preparation and characterization of sulfonated poly (arylene thioether sulfone)/imino-containing phosphorylated silica particle composite proton exchange membranes. High Perform. Polym., 2019, 31, 753. https://doi.org/10.1177/0954008318793932
D. Liu, H. Liao, N. Tan, G. Xiao, D. Yan. Sulfonated poly(arylene thioether phosphine oxide)/sulfonated benzimidazole blends for proton exchange membranes. J. Membr. Sci., 2011, 372, 125. https://doi.org/10.1016/j.memsci.2011.01.057
H. Xu, K. Chen, X. Guo, J. Fang, J. Yin. Synthesis of novel sulfonated polybenzimidazole and preparation of cross-linked membranes for fuel cell application. Polymer, 2007, 48, 5556. https://doi.org/10.1016/j.polymer.2007.07.029
N. Tan, Y. Chen, G. Xiao, D. Yan. Synthesis and properties of sulfonated polybenzothiazoles with benzimidazole moieties as proton exchange membranes. J. Membr. Sci., 2010, 356, 70. https://doi.org/10.1016/j.memsci.2010.03.028
H. Maekawa, K. Nakamura, H. Kudo. Synthesis and properties of highly thermally stable ultrathin films of fluorine‐containing hyperbranched polybenzoxazoles. J. Polym. Sci., 2024, 62, 1731. https://doi.org/10.1002/pol.20230659
R. Bouchet, E. Siebert. Proton conduction in acid doped polybenzimidazole. Solid State Ion., 1999, 118, 287. https://doi.org/10.1016/S0167-2738(98)00466-4
R. He, Q. Li, G. Xiao, N. J. Bjerrum. Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors. J. Membr. Sci., 2003, 226, 169. https://doi.org/10.1016/j.memsci.2003.09.002
J. A. Asensio, P. Gómez‐Romero. Recent Developments on Proton Conduc‐ting Poly (2, 5‐benzimidazole)(ABPBI) Membranes for High Temperature Poly‐mer Electrolyte Membrane Fuel Cells. Fuel Cells, 2005, 5, 336. https://doi.org/10.1002/fuce.200400081
S. Qing, W. Huang, D. Yan. Synthesis and characterization of thermally stable sulfonated polybenzimidazoles. Eur. Polym. J., 2005, 41, 1589. https://doi.org/10.1016/j.eurpolymj.2005.02.001
S. Qing, W. Huang, D. Yan. Synthesis and properties of soluble sulfonated polybenzimidazoles. React. Funct. Polym., 2006, 66, 219. https://doi.org/10.1016/j.reactfunctpolym.2005.07.020
J. A. Asensio, S. Borrós, P. Gómez-Romero. Sulfonated poly (2, 5-benzimidazole)(SABPBI) impregnated with phosphoric acid as proton conducting membranes for polymer electrolyte fuel cells. Electrochim. Acta, 2004, 49, 4461. https://doi.org/10.1016/j.electacta.2004.05.002
M. J. Ariza, D. J. Jones, J. Rozière. Role of post-sulfonation thermal treatment in conducting and thermal properties of sulfuric acid sulfonated poly(benzimidazole) membranes. Desalination, 2002, 147, 183. https://doi.org/10.1016/S0011-9164(02)00532-5
P. Staiti, F. Lufrano, A. S. Arico, E. Passalacqua, V. Antonucci. Sulfonated polybenzimidazole membranes—preparation and physico-chemical characterization. J. Membr. Sci., 2001, 188, 71. https://doi.org/10.1016/S0376-7388(01)00359-3
X. Glipa, M. El Haddad, D. J. Jones, J. Rozière. Synthesis and characterisation of sulfonated polybenzimidazole: a highly conducting proton exchange polymer. Solid State Ion., 1997, 97, 323. https://doi.org/10.1016/S0167-2738(97)00032-5
S. Kang, C. Zhang, G. Xiao, D. Yan, G. Sun. Synthesis and properties of soluble sulfonated polybenzimidazoles from 3, 3′-disulfonate-4, 4′-dicarboxylbiphenyl as proton exchange membranes. J. Membr. Sci., 2009, 334, 91. https://doi.org/10.1016/j.memsci.2009.02.021
G. Wang, S. Yang, B. Y. Hua, M. X. Lu, J. Q. Kang, W. S. Tang, H. L. Wei, X. X. Liu, L. F. Cui, X. D. Chen. Soluble sulfonated polybenzimidazoles containing phosphine oxide units as proton exchange membranes. New J. Chem., 2023, 47, 10613. https://doi.org/10.1039/d3nj00796k
N. Tan, G. Xiao, D. Yan, G. Su. Preparation and properties of polybenzimidazoles with sulfophenylsulfonyl pendant groups for proton exchange membranes. J. Membr. Sci., 2010, 353, 51. https://doi.org/10.1016/j.memsci.2010.02.029
S. Mukhopadhyay, A. Das, T. Jana, S. K. Das. Fabricating a MOF material with polybenzimidazole into an efficient proton exchange membrane. ACS Appl. Energy Mater., 2020, 3, 7964. https://doi.org/10.1021/acsaem.0c01322
Y. Wang, P. Sun, Z. Xia, Z. Li, H. Ding, Z. Fan, H. Guo. Anchoring highly sulfonated hyperbranched PBI onto oPBI: fast proton conduction with low leaching. ACS Appl. Energy Mater., 2022, 5, 10802. https://doi.org/10.1021/acsaem.2c01491
S. Banerjee, M. K. Madhra, A. K. Salunke, G. Maier. Synthesis and properties of fluorinated polyimides. 1. Derived from novel 4, 4 ″‐bis (aminophenoxy)‐3, 3 ″‐trifluoromethyl terphenyl. J. Polym. Sci. Part A: Polym. Chem., 2002, 40, 1016. https://doi.org/10.1002/pola.10189
M. K. Madhra, A. K. Salunke, S. Banerjee, S. Prabha. Synthesis and properties of fluorinated polyimides, 2. Derived from novel 2,6‐bis(3′‐trifluoromethyl‐p‐aminobiphenyl ether)pyridine and 2,5‐bis (3′‐trifluoromethyl‐p‐aminobiphenyl ether) thiophene. Macromol. Chem. Phys., 2002, 203, 1238. https://doi.org/10.1002/1521-3935(200206)203:9<1238::AID-MACP1238>3.0.CO;2-R
E. A. Mistri, A. K. Mohanty, S. Banerjee, H. Komber, B. Voit. Naphthalene dianhydride based semifluorinated sulfonated copoly (ether imide)s: Synthesis, characterization and proton exchange properties. J. Membr. Sci., 2013, 441, 168. https://doi.org/10.1016/j.memsci.2013.03.015
S. K. Sen, S. Banerjee. Gas transport properties of fluorinated poly (ether imide) films containing phthalimidine moiety in the main chain. J. Membr. Sci., 2010, 350, 53. https://doi.org/10.1016/j.memsci.2009.12.011
B. Dasgupta, S. K. Sen, S. Banerjee. Aminoethylaminopropylisobutyl POSS—Polyimide nanocomposite membranes and their gas transport properties. Mater. Sci. Eng. B, 2010, 168, 30. https://doi.org/10.1016/j.mseb.2009.10.006
V. Kute, S. Banerjee. Novel semi‐fluorinated poly (ether imide) s derived from 4‐(p‐aminophenoxy)‐3‐trifluoromethyl‐4′‐aminobiphenyl. Macromol. Chem. Phys., 2003, 204, 2105. https://doi.org/10.1002/macp.200350070
M. Ding. Isomeric polyimides. Prog. Polym. Sci., 2007, 32, 623. https://doi.org/10.1016/j.progpolymsci.2007.01.007
K. Xie, J. G. Liu, H. W. Zhou, S. Y. Zhang, M. H. He, S. Y. Yang. Soluble fluoro-polyimides derived from 1,3-bis(4-amino-2-trifluoromethyl-phenoxy)benzene and dianhydrides. Polymer, 2001, 42, 7267. https://doi.org/10.1016/S0032-3861(01)00138-0
A. Ganeshkumar, D. Bera, E. A. Mistri, S. Banerjee. Triphenyl amine containing sulfonated aromatic polyimide proton exchange membranes. Eur. Polym. J., 2014, 60, 235. https://doi.org/10.1016/j.eurpolymj.2014.09.009
A. K. Mandal, S. Bisoi, S. Banerjee, H. Komber, B. Voit. Sulfonated copolyimides containing trifluoromethyl and phosphine oxide moieties: synergistic effect towards proton exchange membrane properties. Eur. Polym. J., 2017, 95, 581. https://doi.org/10.1016/j.eurpolymj.2017.08.050
A. G. Kumar, D. Bera, S. Banerjee, R. Veerubhotla, D. Das. Sulfonated poly(ether imide)s with fluorenyl and trifluoromethyl groups: Application in microbial fuel cell (MFC). Eur. Polym. J., 2016, 83, 114. https://doi.org/10.1016/j.eurpolymj.2016.08.009
C. Gao, J. Chen, B. Zhang, L. Wang. Effect of chemical structure and degree of branching on the stability of proton exchange membranes based on sulfonated polynaphthylimides. Polymers, 2020, 12, 652. https://doi.org/10.3390/polym12030652
T. Rohilla, A. Husain, N. Singh, D. K. Mahajan. Atomistic simulation and synthesis of novel sulfonated Polyimide polymer electrolyte membranes with facile proton transport. Chem. Eng. J., 2023, 474, 145727. https://doi.org/10.1016/j.cej.2023.145727
J. Yang, Y. Guo, L. Liu, L. Guo, Z. Sun, C. Wang. Preparation of proton exchange membrane with intrinsic micropores constructing efficient ion transport channels based on segmented copolymer (sulfonated polyimide). J. Energy Storage, 2023, 72, 108407. https://doi.org/10.1016/j.est.2023.108407
X. Wang, S. Zhao, S. Wang, X. Hou, J. Yang, C. Liang, Y. Zhao, L. Wang, C. Shen, N. Gao, L. Jia. Facile preparation of high-performance sulfonated polyimide proton exchange membrane by doping nano carbon sulfonic acid. J. Membr. Sci., 2025, 717, 123605. https://doi.org/10.1016/j.memsci.2024.123605
E. J. Park, P. Jannasch, K. Miyatake, C. Bae, K. Noonan, C. Fujimoto, S. Holdcrof, J. R. Varcoe, D. Henkensmeier, M. D. Guiver, Y. S. Kim. Aryl ether-free polymer electrolytes for electrochemical and energy devices. Chem. Soc. Rev., 2024, 53, 5704. https://doi.org/10.1039/D3CS00186E
G. A. Olah. Superelectrophiles. Angew. Chem., Int. Ed. Engl., 1993, 32, 767. https://doi.org/10.1002/anie.199307673
G. A. Olah, G. Rasul, C. York, G. S. Prakash. Superacid-catalyzed condensation of benzaldehyde with benzene. Study of protonated benzaldehydes and the role of superelectrophilic activation. J. Am. Chem. Soc., 1995, 117, 11211. https://doi.org/10.1021/ja00150a018
O. Hernández-Cruz, M. G. Zolotukhin, S. Fomine, L. Alexandrova, C. Aguilar-Lugo, F. A. Ruiz-Treviño, G. Ramos-Ortíz, J. L. Maldonado, G. Cadenas-Pliego. High-Tg functional aromatic polymers. Macromolecules, 2015, 48, 1026. https://doi.org/10.1021/ma502288d
M. K. Pagels, S. Adhikari, R. C. Walgama, A. Singh, J. Han, D. Shin, C. Bae. One-pot synthesis of proton exchange membranes from anion exchange membrane precursors. ACS Macro Lett., 2020, 9, 1489. https://doi.org/10.1021/acsmacrolett.0c00550
M. R. Hibbs, C. H. Fujimoto, C. J. Cornelius. Synthesis and characterization of poly (phenylene)-based anion exchange membranes for alkaline fuel cells. Macromolecules, 2009, 42, 8316. https://doi.org/10.1021/ma901538c
J. Ahn, R. Shimizu, K. Miyatake. Sulfonated aromatic polymers containing hexafluoroisopropylidene groups: a simple but effective structure for fuel cell membranes. J. Mater. Chem. A, 2018, 6, 24625. https://doi.org/10.1039/C8TA09587F
Q. Wang, L. Sang, L. Huang, J. Guan, H. Yu, J. Zheng, Q. Zhang, G. Qin, S. Li, S. Zhang. Design and synthesis of comb‐like bisulfonic acid proton exchange membrane with regulated microstructure. Adv. Funct. Mater., 2024, 34, 2316506. https://doi.org/10.1002/adfm.202316506
C. Ba, S. Xu, C. G. Arges, J. H. Park, J. Park, M. Urgun-Demirtas. Design of non-fluorinated proton exchange membranes from Poly(Terphenyl fluorenyl isatin) with fluorene-linked sulfonate groups and microblock structures. J. Membr. Sci., 2025, 717, 123551. https://doi.org/10.1016/j.memsci.2024.123551
T. Ryu, H. Jang, F. Ahmed, N. S. Lopa, H. Yang, S. Yoon, I. Choi, W. Kim. Synthesis and characterization of polymer electrolyte membrane containing methylisatin moiety by polyhydroalkylation for fuel cell. Int. J. Hydrogen Energy, 2018, 43, 5398. https://doi.org/10.1016/j.ijhydene.2017.12.164
H. Nederstedt, P. Jannasch. Poly(p-terphenyl alkylene)s grafted with highly acidic sulfonated polypentafluorostyrene side chains for proton exchange membranes. J. Membr. Sci., 2022, 647, 120270. https://doi.org/10.1016/j.memsci.2022.120270
X. Yan, H. Zhang, Z. Hu, L. Li, L. Hu, Z. A. Li, L. Gao, Y. Dai, X. Jian, G. He. Amphoteric-side-chain-functionalized “ether-free” poly(arylene piperidinium) membrane for advanced redox flow battery. ACS Appl. Mater. Interfaces, 2019, 11, 44315. https://doi.org/10.1021/acsami.9b15872
H. Bai, H. Peng, Y. Xiang, J. Zhang, H. Wang, S. Lu, L. Zhuang. Poly(arylene piperidine)s with phosphoric acid doping as high temperature polymer electrolyte membrane for durable, high-performance fuel cells. J. Power Sources, 2019, 443, 227219. https://doi.org/10.1016/j.jpowsour.2019.227219
J. Guan, X. Sun, H. Yu, J. Zheng, Y. Sun, S. Li, G. Qin, S. Zhang. High conductive and dimensional stability proton exchange membranes with an all-carbon main chain and densely sulfonated structure. J. Membr. Sci., 2024, 700, 122664. https://doi.org/10.1016/j.memsci.2024.122664
W. Li, R. Zhang, X. Zhao, Z. Yue, H. Qian, H. Yang. Highly proton conductive and stable sulfonated poly(arylene-alkane) for fuel cells with performance over 2.46 W cm-2. J. Mater. Chem. A, 2023, 11, 4547. https://doi.org/10.1039/D2TA08911D
N. R. Kang, T. H. Pham, P. Jannasch. Polyaromatic perfluorophenylsulfonic acids with high radical resistance and proton conductivity. ACS Macro Lett., 2019, 8, 1247. https://doi.org/10.1021/acsmacrolett.9b00615
Y. Liang, Z. Liu, K. Lin, W. Yin, Y. Zhu. High‐performance poly(m-terphenyl fluorenyl)s containing long flexible side chains with dual 1,2,3-triazole and disulfonated units for proton exchange membranes. J. Membr. Sci., 2025, 718, 123691. https://doi.org/10.1016/j.memsci.2025.123691
B. Xue, M. Z. Zhu, S. Q. Fu, P. P. Huang, H. Qian, P. N. Liu. Facile synthesis of sulfonated poly (phenyl-alkane) s for proton exchange membrane fuel cells. J. Membr. Sci., 2023, 673, 121263. https://doi.org/10.1016/j.memsci.2022.121263
R. X. Yao, L. Kong, Z. S. Yin, F. L. Qing. Synthesis of novel aromatic ether polymers containing perfluorocyclobutyl and triazole units via click chemistry. J. Fluor. Chem., 2008, 129, 1003. https://doi.org/10.1016/j.jfluchem.2008.04.012
G. Qiu, P. Nava, A. Martinez, C. Colomban. A tris(benzyltriazolemethyl)amine-based cage as a CuAAC ligand tolerant to exogeneous bulky nucleophiles. Chem. Commun., 2021, 57, 2281. https://doi.org/10.1039/D0CC08005E
M. C. Floros, J. F. Bortolatto, Jr O. B. Oliveira, S. L. Salvador, S. S. Narine. Antimicrobial activity of amphiphilic triazole-linked polymers derived from renewable sources. ACS Biomater. Sci. Eng., 2016, 2, 336. https://doi.org/10.1021/acsbiomaterials.5b00412
X. Wang, X. Zhang, Y. Wang, S. Ding. IrAAC-based construction of dual sequence-defined polytriazoles. Polym. Chem., 2021, 12, 3825. https://doi.org/10.1039/D1PY00718A
D. Huang, Y. Liu, A. Qin, B. Z. Tang. Nickel-Catalyzed Azide–Alkyne Click Polymerization toward 1, 5-Regioregular Polytriazoles. Macromolecules, 2023, 56, 10092. https://doi.org/10.1021/acs.macromol.3c02000
M. Li, X. Duan, Y. Jiang, X. Sun, X. Xu, Y. Zheng, W. Song, N. Zheng. Multicomponent polymerization of azides, alkynes, and electrophiles toward 1,4,5-trisubstituted polytriazoles. Macromolecules, 2022, 55, 7240. https://doi.org/10.1021/acs.macromol.2c00966
V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless. A stepwise huisgen cycloaddition process: copper (I)‐catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem., Int. Ed., 2002, 41, 2596. https://doi.org/10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4
A. Ghosh, S. Banerjee. Sulfonated fluorinated-aromatic polymers as proton exchange membranes. e-Polymers, 2014, 14, 227. https://doi.org/10.1515/epoly-2014-0049
A. Ghorai, S. Roy, S. Das, H. Komber, M. M. Ghangrekar, B. Voit, S. Banerjee. Preparation of sulfonated polytriazoles with a phosphaphenanthrene unit via click polymerization: fabrication of membranes and properties thereof. ACS Appl. Polym. Mater., 2021, 3, 4127. https://doi.org/10.1021/acsapm.1c00600
A. Ghorai, A. K. Mandal, S. Banerjee. Synthesis and characterization of new phosphorus containing sulfonated polytriazoles for proton exchange membrane application. J. Polym. Sci., 2020, 58, 263. https://doi.org/10.1002/pol.20190030
A. Ghorai, S. Banerjee. Phosphorus‐Containing Fluoro‐Sulfonated Polytriazole Membranes with High Proton Conductivity: Understanding Microstructural and Thermomechanical Behaviors as a Function of Degree of Sulfonation. Macromol. Chem. Phys., 2023, 224, 2200031. https://doi.org/10.1002/macp.202200031
R. Kamble, B. Ghanti, D. Pradhan, S. Banerjee. Fabrication of a High Proton‐Conducting Sulfonated Fe‐Metal Organic Framework‐Polytriazole Composite Membranes: Study of Proton Exchange Membrane Properties. Macromol. Rapid Commun., 2025, 2401026. https://doi.org/10.1002/marc.202401026
A. Abdolmaleki, M. Zhiani, M. Maleki, S. Borandeh, K. Firouz. Preparation and evaluation of sulfonated polyoxadiazole membrane containing phenol moiety for PEMFC application. Polymer, 2015, 75, 17. https://doi.org/10.1016/j.polymer.2015.08.021
D. Zhao, J. Li, M. K. Song, B. Yi, H. Zhang, M. Liu. A durable alternative for proton‐exchange membranes: Sulfonated poly(benzoxazole thioether sulfone)s. Adv. Energy Mater., 2011, 1, 203. https://doi.org/10.1002/aenm.201000062
Z. Zhang, L. Wu, T. Xu. Synthesis and properties of side-chain-type sulfonated poly (phenylene oxide) for proton exchange membranes. J. Membr. Sci., 2011, 373, 160. https://doi.org/10.1016/j.memsci.2011.03.002
G. Wang, S. Yang, N. Y. Kang, B. Hua, M. Lu, H. Wei, J. Kang, W. Tang, Y. M. Lee. Sulfonated polybenzothiazoles containing hexafluoroisopropyl units for proton exchange membrane fuel cells. Macromolecules, 2023, 56, 5546. https://doi.org/10.1021/acs.macromol.3c00301
G. Chao, Z. Zhang, Z. Lv, E. Yang, R. Gao, Q. Ju, H. Gao, C. Niu, H. Qian, K. Geng, N. Li. Copolymerized sulfonated poly (oxindole biphenylene) polymer electrolyte for proton exchange membrane fuel cells. J. Membr. Sci., 2024, 700, 122674. https://doi.org/10.1016/j.memsci.2024.122674
K. F. Tadavani, A. Abdolmaleki, M. R. Molavian, S. Borandeh, E. Sorvand, M. Zhiani. Synergistic behavior of phosphonated and sulfonated groups on proton conductivity and their performance for high-temperature proton exchange membrane fuel cells (PEMFCs). Energy Fuels, 2017, 31, 11460. https://doi.org/10.1021/acs.energyfuels.7b01065
N. Y. Abu-Thabit, S. A. Ali, S. J. Zaidi, K. Mezghani. Novel sulfonated poly (ether ketone)/phosphonated polysulfone polymer blends for proton conducting membranes. J. Mater. Res., 2012, 27, 1958. https://doi.org/10.1557/jmr.2012.145
B. Xue, S. Zhou, J. Yao, F. Wang, J. Zheng, S. Li, S. Zhang. Novel proton exchange membranes based on sulfonated-phosphonated poly(p-phenylene-co-aryl ether ketone) terpolymers with microblock structures for passive direct methanol fuel cells. J. Membr. Sci., 2020, 594, 117466. https://doi.org/10.1016/j.memsci.2019.117466