Theranostic Potential of Quantum Dots: From Imaging to Therapy Materials Science

Main Article Content

Prof. Avinash Singh
Pratibha Chahal
Dr. Ajit Kumar

Abstract

The combination of nano-biotechnology advances the biomedical field, opening up groundbreaking opportunities for disease diagnosis, monitoring and treatment. Quantum dots (QDs) are at the leading edge of this innovation, known for their exceptional physicochemical qualities and customizable optoelectronic features. These luminous nanoparticles have become invaluable in theranostics by offering a unique combination of diagnostic and therapeutic capabilities. This review offers a comprehensive analysis of QDs, emphasizing their cytotoxicity, imaging potential, and applications in targeted drug delivery, photothermal therapy (PTT), and photodynamic therapy (PDT). By assessing their potential and limitations, we aim to harness QDs to reshape precision medicine and drive advancements in healthcare.

Article Details

How to Cite
Theranostic Potential of Quantum Dots: From Imaging to Therapy: Materials Science. (2025). Innovation of Chemistry & Materials for Sustainability, 2(1), 12-22. https://doi.org/10.63654/icms.2025.02012
Section
Review Article
Author Biographies

Prof. Avinash Singh, Department of Chemistry, SRM University Delhi-NCR, Sonipat-131029, Haryana, India

Dr. Avinash Singh received his PhD from the Radiation & Photochemistry Division of the Bhabha Atomic Research Centre in Mumbai, India, in 2018. He had previously completed his BSc (Hons) and MSc in Chemistry at Banaras Hindu University. He is currently employed with SRM University Delhi-NCR, Sonepat, as an Assistant Professor in the Chemistry Department. His research areas of interest are photochemistry, radiation chemistry, and semiconductor nanomaterials.

Pratibha Chahal , Department of Chemistry, SRM University Delhi-NCR, Sonipat-131029, Haryana, India

Pratibha Chahal graduated from Maharshi Dayanand University in Rohtak in 2020 with a master's degree in chemistry, specialising in physical chemistry. She demonstrated academic excellence by being eligible for national and state-level exams such as the CTET (2023), HTET (2022), and Net JRF (2022). She is now working with Dr. Avinash Singh at SRM University in Delhi-NCR, Sonipat, to complete her PhD. Her areas of interest are nanotechnology and semiconductor QDs.

Dr. Ajit Kumar, Department of Chemistry, SRM University Delhi-NCR, Sonipat-131029, Haryana, India

Dr. Ajit Kumar is currently working as a Professor and Head of the Department of Chemistry, SRM University Delhi-NCR, Sonepat Haryana. He obtained his Ph.D. degree from Faculty of Medical Sciences, University of Delhi in 2006. His research interest is post translational modifications of proteins and related biological implications. He has been credited to unravel acetyl transferase function of calreticulin, a Ca binding protein and has extensively studied aflatoxin-B1 induced genotoxicity and carcinogenicity.

How to Cite

Theranostic Potential of Quantum Dots: From Imaging to Therapy: Materials Science. (2025). Innovation of Chemistry & Materials for Sustainability, 2(1), 12-22. https://doi.org/10.63654/icms.2025.02012

References

C. Zhu, Z. Chen, S. Gao, Ban L. Goh, I. B. Samsudin, K. W. Lwe, Y. Wu, X. Su. Recent advances in non-toxic quantum dots and their biomedical applications. Prog. Nat. Sci.: Mater. Int. 2019, 29, 628. https://doi.org/10.1016/j.pnsc.2019.11.007

R. M. Abdelgalil, S. N. Khattab, S. Ebrahim, K. A. Elkhodairy, M. Teleb, A. A. Bekhit, M. A. Sallam and A. O. Elzoghby. Engineered sericin-tagged layered double hydroxides for combined delivery of pemetrexed and ZnO quantum dots as biocompatible cancer nanotheranostics. ACS Omega 2023, 8, 5655. https://doi.org/10.1021/acsomega.2c07128

C. T Matea, T. Mocan, F. Tabaran, T. Pop, O. Mosteanu, C. Puia, C. Lancu, L. Mocan. Quantum dots in imaging, drug delivery and sensor applications. Int. J. Nanomed. 2017, 12, 5421. https://doi.org/10.2147/ijn.s138624

L. He, L. Zeng, X. Mai, C. Shi, L. Luo, T. Chen. Nucleolin-targeted selenium nanocomposites with enhanced theranostic efficacy to antagonize glioblastoma. J. Mater. Chem. B 2017, 5, 3024. https://doi.org/10.1039/C6TB03365B

N. S. Kulkarni, Y. Guererro, N. Gupta, A. Muth, V. Gupta. Exploring potential of quantum dots as dual modality for cancer therapy and diagnosis. J. Drug Del. Sci. Tech 2019, 49, 352. https://doi.org/10.1016/j.jddst.2018.12.010

S. Liu, H. Cui, J. Huang, B. Tian, J. Bao. Osmanthus-derived carbon dots for cell imaging and NIR photothermal therapy. Mater. Lett. 2024, 377, 137347. https://doi.org/10.1016/j.matlet.2024.137347

A. Abrishami, A. R. Bahrami, S. Nekooei, A. Sh. Saljooghi, M. M. Matin. Hybridized quantum dot, silica, and gold nanoparticles for targeted chemo-radiotherapy in colorectal cancer theranostics. Commun. Biol. 2024, 7, 393. https://doi.org/10.1038/s42003-024-06043-6

S. M. Elsherbiny, C. Shao, A. Acheampong, M. A. Khalifa, C. Liu, Q. Huang. Green synthesis of broccoli-derived carbon quantum dots as effective photosensitizers for the PDT effect testified in the model of mutant caenorhabditis elegans. Biomater. Sci. 2022, 10, 2857. https://doi.org/10.1039/D2BM00274D

S. Liu, J. Wang, X. Wang, Y. Guo, S. Guan, T. Zhang. Nucleus-targeted carbon dots as peroxidise nanozyme for photoacoustic imaging and phototherapy of tumour. Colloids Surf. B Biointerfaces 2024, 239, 113950. https://doi.org/10.1016/j.colsurfb.2024.113950

J. Zhang, P. Fan, Y. Shi, X. Huang, C. Shi, W. Ye, H. Tong, F. Shan, Z. Zhang. Near-infrared-mediated self-assembly of graphene quantum dot-based nanoprobes to silence heat shock protein expression for mild photothermal therapy in liposarcoma. ACS Appl. Nano Mater. 2023, 6, 16276. https://doi.org/10.1021/acsanm.3c02387

D. Meng, Y.-Hou, D. Kurniawan, R.-J. Weng, W.-H. Chiang, W. Wang. 3D-printed graphene and graphene quantum dot-reinforced polycaprolactone scaffolds for bone-tissue engineering. ACS Appl. Nano Mater. 2024, 7, 1245. https://doi.org/10.1021/acsanm.3c05225

G. Wu, B. Jiang, L. Zhou, A. Wang, S. Wei. Coconut-shell-derived activity carbon for NIR photo-activated synergistic photothermal-chemodynamic cancer therapy. J. Mater. Chem. B 2021, 9, 2447. https://doi.org/10.1039/D0TB02782K

Y. Hu, X. Wang, Y. Niu, K. He, and M. Tang. Application of quantum dots in brain diseases and their neurotoxic mechanism. Nanoscale Adv. 2024, 6, 3733 https://doi.org/10.1039/D4NA00028E

F. Mazahir, R. Sharma, A. K. Yadav. Bioinspired theranostic quantum dots: paving the road to a new paradigm for cancer diagnosis and therapeutics. Drug Discov. Today 2023, 28, 103822 https://doi.org/10.1016/j.drudis.2023.103822

Y.-P. Ho and K. W. Leong. Quantum dot-based theranostics. Nanoscale 2010, 2, 60. https://doi.org/10.1039/B9NR00178F

Z. Chen, C. Zhao, X. Zhou, L. Xiao, Z. Li, Y. Zhang. A review of top-down strategies for the production of quantum-sized materials. Small science 2023, 3, 2300086 https://doi.org/10.1002/smsc.202300086

L. Shi, B. Wang, S. Lu. Efficient bottom-up synthesis of graphene quantum dots at an atomically precise level. Matter 2023, 6, 728. https://doi.org/10.1016/j.matt.2023.01.003

S. Yalshetti, B. Thokchom, S. M. Bhavi, S. R. Singh, S. R. Patil, B. P. Harini, M. Sillanpaa, J. G. Manjunatha, B. S. Srinath, R. B. Yarajarla. Microwave-assisted synthesis, characterization and in vivo biomedical applications of hibiscus rosa-sinensis linn.-mediated carbon quantum dots. Sci Rep 2024, 14, 9915. https://doi.org/10.1038/s41598-024-60726-y

P. Chahal, A. Goel, A. Singh. Recent development and challenges in metal chalcogenide dots: from material design strategies to applications. Innov. Chem. Mater. Sustain. 2024, 1, 30. https://doi.org/10.63654/icms.2024.01030

P. G. Balkanloo, K. M. Sharifi, and A. P. Marjani. Graphene quantum dots: synthesis, characterization, and application in wastewater treatment: a review. Mater. Adv. 2023, 4, 4272. https://doi.org/10.1039/D3MA00372H

X. Lin and T. Chen. A review of in vivo toxicity of quantum dots in animal models. Int. J. Nanomed. 2023, 18, 8143. https://doi.org/10.2147/IJN.S434842

O. A. Aladesuyi, T. C. Lebepe, R. Maluleke, and O. S. Oluwafemi. Biological applications of ternary quantum dots: a review. Nanotechnol. Rev. 2022, 11, 2304. https://doi.org/10.1515/ntrev-2022-0136

J. Ning, Z. Duan, S. V. Kershaw and A. L. Rogach. Phase-controlled growth of CulnS2 shells to realize colloidal CulnSe2/CulnS2 core/shell nanostructures. ACS Nano 2020, 14, 11799. https://doi.org/10.1021/acsnano.0c04660

G. Mao, G. Wu, M. Chen, C. Yan, J. Tang, Y. Ma and X.-E. Zhang. Synthesis of dual-emitting CdZnSe/Mn:ZnS quantum dots for sensing the pH change in live cells. Anal. Chem. 2022, 94, 6665. https://doi.org/10.1021/acs.analchem.1c04811

B. M. May, M. F. Bambo, S. S. Hosseini, U. Sidwaba, E. N. Nxumalo, and A. K. Mishra. A review on I-III-VI ternary quantum dots for fluorescence detection of heavy metals ions in water: optical properties, synthesis and application. RSC Adv. 2022, 12, 11216. https://doi.org/10.1039/D1RA08660J

N. I.-Rodriguez, R. Munoz, J. A. Rodriguez, R. A. V.-Garcia, and M. Reyes. Integration of ternary I-III-VI quantum dots in light-emitting diodes. Front. Chem. 2023, 11, 1106778. https://doi.org/10.3389/fchem.2023.1106778

S. Nikazar, V. S. Sivasankarapillai, A. Rahdar, S. Gasmi, P S Anumol, M. S. Shanavas. Revisiting the cytotoxicity of quantum dots: an in-depth overview. Biophys Rev 2020, 19, 703. https://doi.org/10.1007/s12551-020-00653-0

A. Nair, J. T. Haponiuk, S. Thomas, S. Gopi. Natural carbon-based quantum dots and their applications in drug delivery: a review. Biomed Pharmacother 2020, 132, 110834. https://doi.org/10.1016/j.biopha.2020.110834

B. J. Furey, B. J. Stacy, T. Shah, R. M. Barba-Barba, R. Carriles, A. Bernal, B. S. Mendoza, B. A. Korgel and M. C. Downer. Two-photon excitation spectroscopy of silicon quantum dots and ramifications for bio-imaging. ACS Nano 2022, 16, 6023. https://doi.org/10.1021/acsnano.1c11428

A. Guleria, S. Neogy, D. K. Maurya, and S. Adhikari. Blue light-emitting Si quantum dots with mesoporous and amorphous features: origin of photoluminescence and potential applications. J. Phys. Chem. C 2017, 121, 24302. https://doi.org/10.1021/acs.jpcc.7b07283

W. A. A. Mohamed, H. A. E.-Gawad, S. Mekkey, H. Galal, H. Handal, H. Mousa, and A. Labib. Quantum dots synthetization and future prospect applications. Nanotechnology Reviews 2021, 10, 1926. https://doi.org/10.1515/ntrev-2021-0118

L. Hu, C. Zhang, G. Zeng, G. Chen, J. Wan, Z. Guo, H. Wu, Z. Yu, Y. Zhou, J. Liu. Metal-based quantum dots: synthesis, surface modification, transport and fate in aquatic environments and toxicity to microorganisms. RCS Adv. 2016, 6, 78595. https://doi.org/10.1039/C6RA13016J

A. Singh, A. Guleria, A. Kumar, S. Neogy, M. C. Rath. Saccharide capped CdSe quantum dots grown via electron beam irradiation. Mater. Chem. Phy. 2017, 199, 609. https://doi.org/10.1016/j.matchemphys.2017.07.062

L. J. Desmond, A. N. Phan and P. Gentile. Critical overview on the green synthesis of carbon quantum dots and their application for cancer therapy. Environ. Sci.: Nano 2021, 8, 848. https://doi.org/10.1039/D1EN00017A

D. Mo, L. Hu, G. Zeng, G. Chen, J. Wan, Z. Yu, Z. Huang, K. He, C. Zhang, M. Cheng. Cadmium-containing quantum dots: properties, applications, and toxicity. Appl Microbiol Biotechnol 2017, 101, 2713. https://doi.org/10.1007/s00253-017-8140-9

G. M. Albuquerque, R. M. Melo, S. D. Coiado, G. A. L. Pereira, G. Pereira. Nanoprobes based on quantum dots and Gd (III) complexes for dual optical and magnetic resonance imaging. Mater. Lett. 2024, 371, 136921. https://doi.org/10.1016/j.matlet.2024.136921

L. T. T. Huong, N. P. Hung, N. T. Ha, N. T. Luyen, N. T. Hien, N. X. Ca, N. T. M. Thuy. Chemically synthesized CdSe quantum dots induce apoptosis in AGS gastric cancer cells via ROS generation. Nanoscale Adv. 2025, 7, 572. https://doi.org/10.1039/D4NA00795F

P. Bhatia, T. Chaira, L. K. Gupta. Therapeutic applications of carbon quantum dots (CQDs): a review. J. Inorg. Organomet. Polym 2024, 1574. https://doi.org/10.1007/s10904-024-03510-9

S. Sahana, A. Gautam, R. Singh, S. Chandel. A recent update on development, synthesis methods, properties and application of natural products derived carbon dots. Nat. Prod. Bioprospect 2023, 13, 51. https://doi.org/10.1007/s13659-023-00415-x

J. Dhariwal, G. K. Rao, D. Vaya. Recent advancements towards the green synthesis of carbon quantum dots as an innovative and eco-friendly solution for metal ion sensing and monitoring. RCS Sustain. 2024, 2, 11. https://doi.org/10.1039/D3SU00375B

S. Pandiyan, L. Arumugam, S. P. Srirengan, R. Pitchan, P. Sevugan, K. Kannan, G. Pitchan, T. A. Hegde, V. Gandhirajan. Biocompatible carbon quantum dots derived from sugarcane industrial wastes for effective nonlinear optical behavior and antimicrobial activity applications. ACS Omega 2020, 5, 30363. https://doi.org/10.1021/acsomega.0c03290

A. Kundu, B. Maity, S. Basu. Orange pomace-derived fluorescent carbon quantum dots: detection of dual analytes in the nanomolar range. ACS Omega 2023, 8, 22178. https://doi.org/10.1021/acsomega.3c02474

X. Yang, D. Wang, N. Luo, M. Feng, X. Peng, X. Liao. Green synthesis of fluorescent N,S-carbon dots from bamboo leaf and the interaction with nitrophenol compounds. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 239, 118462 https://doi.org/10.1016/j.saa.2020.118462

M. Z. Fahmi, A. Haris, A. J. Permana, D. L. N. Wibowo, B. Purwanto, Y. L. Nikmah, A. Idris. Bamboo leaf-based carvon dots for efficient tumour imaging and therapy. RCS Adv. 2018, 8, 38376. https://doi.org/10.1039/C8RA07944G

K. Kasirajan, M. Karunakaran, H. K. Choi. Synthesis of environmentally-friendly carbon quantum dots from orange juice for selective detection of Fe+3 ions, antibacterial activity, and bio-imaging applications. J. Environ. Chem. Eng. 2024, 12, 113535 https://doi.org/10.1016/j.jece.2024.113535

M. He, H. Wang, Y. Kong, Y. Xiao, W. Xu. Material and optical properties of fluorescent carbon quantum dots fabricated from lemon juice via hydrothermal reaction. Nanoscale Res. Lett. 2018, 13, 175 https://doi.org/10.1186/s11671-018-2581-7

S. A. Kousheh, M. Moradi, H. Tajik, R. Molaei. Preparation of antimicrobial/ultraviolet protective bacterial nanocellulose film with carbon dots synthesized from lactic acid bacteria. Int. J. Biol. Macromol. 2020, 155, 216. https://doi.org/10.1016/j.ijbiomac.2020.03.230

A. Kumar, I. Kumar, A. K. Gathania. Synthesis characterization and potential sensing application of carbon dots synthesis via the hydrothermal treatment of cow milk. Sci. Rep. 2022, 12, 22495 https://doi.org/10.1038/s41598-022-26906-4

K. Doshi, A. A. Mungray. Bio-route synthesis of carbon quantum dots from tulsi leaves and its application as a draw solution in forward osmosis. J. Environ. Chem. Eng. 2020, 8, 104174 https://doi.org/10.1016/j.jece.2020.104174

Z. M. S. H. Khan, R. S. Rahman, Shumaila, S. Islam, M. Zulfequar. Hydrothermal treatment of red lentils for the synthesis of fluorescent carbon quantum dots and its application for sensing Fe+3. Opt. Mater. 2019, 91, 386. http://dx.doi.org/10.1016/j.optmat.2019.03.054

J. P. Malavika, C. Shobana, M. Ragupathi, P. Kumar, Y. S. Lee, M. Govarthanan, R. K. Selvan. A sustainable green synthesis of functionalized biocompatible carbon quntum dots from aloe barbadensis miller and its multifunctional applications. Environ. Res. 2021, 200, 111414 https://doi.org/10.1016/j.envres.2021.111414

P. K. Praseetha, R. I. J. Litany, H. M. Alharbi, A. A. Khojah, S. Akash, M. Bourhia, A. A. Mengistie, G. A. Shazly. Green synthesis of highly fluorescent carbon quantum dots from almond resin for advanced theranostics in biomedical applications. Sci. Rep. 2024, 14, 24435. https://doi.org/10.1038/s41598-024-75333-0

R. Zhong, C. Peng, L. Chen, N. Yu, Z. Chen. Egg white-mediated green synthesis of CuS quantum dots as a biocompatible and efficient 980 nm laser-driven photothermal agent. RCS Adv. 2016, 6, 40480. https://doi.org/10.1039/C5RA26801J

H. Yan, P. Li, F. Wen, Q. Guo, W. Su. Green synthesis of carbon quantum dots from turmeric holds promise as novel photosensitizer for in vitro photodynamic antimicrobial activity. J. Mater. Res. Technol. 2023, 22, 17. https://doi.org/10.1016/j.jmrt.2022.11.090

G. Gedda, Sri A. Sankaranarayanan, C. L. Putta, K. K. Gudimella, A. K. Rengan, W. M. Girma. Green synthesis of multi-functional carbon dots from medicinal plant leaves for antimicrobial, antioxidant, and bioimaging applications. Sci. Rep. 2023, 13, 6371 https://doi.org/10.1038/s41598-023-33652-8

S. Mishra, K. Das, S. Chatterjee, P. Sahoo, S. Kundu, M. Pal, A. Bhaumik, C. K. Ghosh. Facile and green synthesis of novel fluorescent carbon quantum dots and their silver heterostructure: an in vitro anticancer activity and imaging on colorectal carcinoma. ACS Omega 2023, 8, 4566. https://doi.org/10.1021/acsomega.2c04964

P. Kumar, A. Ravichandran, S. Durgadevi, V. Manikandan, K. S. Song, D. Prabhu, J. Jeyakanthan, D. Thirumurugan, G. Muthusamy. Microwave-assisted green synthesis of CQDs from mesosphaerum suaveolens extract: photocatalytic degradation and anticancer activity. Waste Biomass Valor 2024, 15, 6539. https://doi.org/10.1007/s12649-024-02643-9

S. Yalshetti, B. Thokchom, S. M. Bhavi, S. R. Singh, S. R. Patil, B. P. Harini, M. Sillanpaa, J. G. Manjunatha, B. S. Srinath, R. B. Yarajarla. Microwave-assisted synthesis, characterization and in vitro biomedical applications of hibiscus rosa-sinensis linn.-mediated carbon quantum dots. Sci. Rep. 2024, 14, 9915 https://doi.org/10.1038/s41598-024-60726-y

T. Mohanta, H. G. Behuria, S. K. Sahu, A. K. Jena, S. Sahu. Green synthesis of N,S-doped carbon dots for tartrazine detection and their antibacterial activity. Analyst 2023, 148, 5597. https://doi.org/10.1039/D3AN01609A

Y. Jin, H. Qiao, Y. Zhang, Y. He, S. Xie, Y. Gu, F. Lin. Facile microwave hydrothermal synthesis of citric acid-derived carbon dots for photothermal therapy of cancers under NIR irradiation. Carbon Lett. 2024, 2233. https://doi.org/10.1007/s42823-024-00830-1

M. Rai, A. P. Ingle, G. Toros, J. Prokisch. Assessing the efficacy of carbon nanodots derived from curcumin on infectious diseases. Expert Rev Anti Infect Ther 2024, 22, 1107. https://doi.org/10.1080/14787210.2024.2409401

L. Wu, Y. Gao, C. Zhao, D. Huang, W. Chen, X. Lin, A. Liu, L. Lin. Synthesis of curcumin-quaternized carbon quantum dots with enhanced broad-spectrum antibacterial activity for promoting infected wound healing. Biomater. Adv. 2022, 133, 112608 https://doi.org/10.1016/j.msec.2021.112608

J. Ma, C. Peng, X. Peng, S. Liang, Z. Zhou, K. Wu, R. Chen, S. Liu, Y. Shen, H. Ma, Y. Zhang. H2O2 photosynthesis from H2O and O2 under weak light by carbon nitrides with the piezoelectric effect. J. Am. Chem. Soc. 2024, 146, 21147. https://doi.org/10.1021/jacs.4c07170

F. Lang, Q. Zhao, Z. Sun, M. Zhong, L. Xiong, Z. Hao. Rutin-loaded carbon dots for management of methicillin-resistant staphylococcus ACS Appl. Nano Mater. 2024, 7, 10902. https://doi.org/10.1021/acsanm.3c05774

B. Khan, J. Zhang, S. Durrani, H. Wang, A. Nawaz, F. Durrani, Y. Ye, F.-G. Wu, F. Lin. Carbo-dots-mediated improvement of antimicrobial activity of natural products. ACS Appl. Mater. Interfaces 2024, 16, 47257. https://doi.org/10.1021/acsami.4c09689

N. Ziaee, N. Farhadian, K. Abnous, M. M. Matin, A. Khoshnood, E. Yaghoobi. Dual targeting of Mg/N doped-carbon quantum dots with folic and hyaluronic acid for targeted drug delivery and cell imaging. Biomed. Pharmacother. 2023, 164, 114971 https://doi.org/10.1016/j.biopha.2023.114971

A. Kalluri, B. Dharmadhikari, D. Debnath, P. Patra, C. V. Kumar. Advances in structural modifications and properties of graphene quantum dots for biomedical applications. ACS Omega 2023, 8, 21358. https://doi.org/10.1021/acsomega.2c08183

G. Perini, V. Palmieri, G. Ciasca, M. D’Ascenzo, J. Gervasoni, A. Primiano, M. Rinaldi, D. Fioretti, C. Prampolini, F. Tiberio, W. Lattanzi, O. Parolini, M. D. Spirito, M. Papi. Graphene quantum dots’ surface chemistry modulates the sensitivity of glioblastoma cells to chemotherapeutics. Int. J. Mol. Sci. 2020, 21, 6301 https://doi.org/10.3390/ijms21176301

P. Kaliyaperumal, S. Renganathan, K. Arumugam, B. R. Aremu. Engineered graphene quantum dot nanocomposite triggers –synuclein defibrillation: therapeutics against Parkinson’s disease. Nanomed.: Nanotechnol. Biol. Med. 2023, 47, 102608 https://doi.org/10.1016/j.nano.2022.102608

K. Tak, R. Sharma, V. Dave, S. Jain, and S. Sharma. Clitoria ternatea mediated synthesis of graphene quantum dots for the treatment of alzheimer’s disease. ACS Chem. Neurosci. 2020, 11, 3741. https://doi.org/10.1021/acschemneuro.0c00273

G. Perini, V. Palmieri, G. Friggeri, A. Augello, M. D. Spirito, M. Papi. Carboxylated graphene quantum dots-mediated photothermal therapy enhances drug-membrane permeability, ROS production, and the immune system recruitment on 3D glioblastoma models. Cancer Nano 2023, 14, 393. https://doi.org/10.1186/s12645-023-00168-9

S. Tajik, Z. Dourandish, K. Zhang, H. Beitollahi, Q. Van Le, H. W. Jang, M. Shokouhimehr. Carbon and graphene quantum dots: a review on syntheses, characterization, biological and sensing applications for neurotransmitter determination. RSC Adv. 2020, 10, 15406. https://doi.org/10.1039/D0RA00799D

S. Deng, E. Zhang, Y. Wang, Y. Zhao, Z. Yang, B. Zheng, X. Mu, X. Deng, H. Shen, H. Rong, D. Pei. In vivo toxicity assessment of four types of graphene quantum dots (GQDs) using mRNA sequencing. Toxicol. Lett. 2022, 363, 55. https://doi.org/10.1016/j.toxlet.2022.05.006

Q. Xia, Y. Tang, W. Li, T. Liang, Y. Zhou, J. Liu, F. Liu. Surface-engineered monocyte immunotherapy combined graphene dots effective against solid tumour targets. Int. J. Nanomed. 2023, 18, 2127. https://doi.org/10.2147/IJN.S404486

R. S. Tade, P. O. Patil. Fabrication of poly-L-lysine-functionalized graphene quantum dots for the label-free fluorescent-based detection of carcinoembryonic antigen. ACS Biomater. Sci. Eng. 2022, 8, 470. https://doi.org/10.1021/acsbiomaterials.1c01087

M. M. Tehrani, M. Erfani, M. Amiri, M. Goudarzi. Technetium-99m radiolabeling of graphene quantum dots (GQDs) as a new probe for glioblastoma tumour imaging. Int. J. Radiat. Biol. 2024, 101, 65. https://doi.org/10.1080/09553002.2024.2404460

A. Soleimany, S. Khoee, S. Dias, B. Sarmento. Exploring low-power single-pulsed laser-triggered two-photon photodynamic/photothermal combination therapy using a gold nanostar/graphene quantum dot nanohybrid. ACS Appl. Mater. Interfaces 2023, 15, 20811. https://doi.org/10.1021/acsami.3c03578

R. S. Tade, M. P. More, S. N. Nangare, P. O. Patil. Graphene quantum dots (GQDs) nanoarchitectonics for theranostic application in lung cancer. J. Drug Target. 2022, 30, 269. https://doi.org/10.1080/1061186X.2021.1987442

T.-H. Ku, W.-T. Shen, C.-T. Hsieh, G. S. Chen, W.-C. Shia. Specific forms of graphene quatum dots induce apoptosis and cell cycle arrest in breast cancer cells. Int. J. Mol. Sci. 2023, 24, 4046 https://doi.org/10.3390/ijms24044046

I. J. Gomez, K. O.-Paredes, J. M. M.-Arriaga, N. Pizurova, M. Filice, L. Zajickova, S. Prashar, S. G.-Ruiz. Organotin-(IV)-decorated graphene quantum dots as dual platform for molecular imaging and treatment of triple negative breast cancer. Chem. Eur. J. 2023, 29, e20231845. https://doi.org/10.1002/chem.202301845

R. V. Khose, P. Bangde, M. P. Bondarde, P. S. Dhumal, M. A. Bhakare, G. Chakraborty, A. K. Ray, P. Dandekar, S. Some. Waste derived approach towards wealthy fluorescent N-doped graphene quantum dots for cell imaging and H2O2 sensing applications. Spectrochim. Acta A Mol. Biomol. Spectrosc 2022, 266, 120453. https://doi.org/10.1016/j.saa.2021.120453

M. Najafi, Z. Khoddam, M. Masnavi, M. Pourmadadi, M. Abdouss. Physicochemical and in vitro characterization of agarose based nanocarriers incorporated with graphene quantum dots/α-Fe2O3 for targeted drug delivery of quercetin to liver cancer treatment. Mater. Chem. Phys. 2024, 320, 129333. https://doi.org/10.1016/j.matchemphys.2024.129333

Z. Zhang, H. Yang, M. Wang, Y. Zhang, J. Jiang, Q. Wang. NIR-II silver-based quantum dots: synthesis and applications. Nano Res. 2024, 17, 10620. https://doi.org/10.1007/s12274-024-6977-7

F. Y. Acar. Theranostic silver chalcogenide quantum dots in phototherapy. Photodiagnosis Photodyn Ther 2023, 41, 103397 https://doi.org/10.1016/j.pdpdt.2023.103397

M. Hashemkhani, M. Loizidou, A. J. MacRobert, H. Y. Acar. One-step aqueous synthesis of anionic and cationic AglnS2 quantum dots and their utility in improving the efficacy of ALA-based photodynamic therapy. Inorg. Chem. 2022, 61, 2846. https://doi.org/10.1021/acs.inorgchem.1c03298

E. Tan, P. T. Snee, F. D.-Kalindemirtas. An investigation of quantum dot theranostic probes for prostate and leukemia cancer cells using a CdZnSeS QD-based nanoformulation. J. Colloid Interface Sci. 2024, 675, 1032. https://doi.org/10.1016/j.jcis.2024.07.075

Y. Li, P Zhang, W. Tang, K. J. Mchugh, S. V. Kershaw, M. Jiao, X. Huang, S. Kalytchuk, C. F. Perkinson, S. Yue, Y. Qiao, L. Zhu, L. Jing, M. Gao, B. Han. Bright, magnetic NIR-II quantum dot probe for sensitive dual-modality imaging and intensive combination therapy of cancer. ACS Nano 2022, 16, 8076. https://doi.org/10.1021/acsnano.2c01153

V. S. Sivasankarapillai, J. Jose, M. S. Shanavas, A. Marathakam, Md. S. Uddin, B. Mathew. Silicon quantum dots: promising theranostics probes for the future. Curr. Drug Targets, 2019, 20, 1255. http://dx.doi.org/10.2174/1389450120666190405152315

Y. Zhang, N. Cai, V. Chan. Recent advances in silicon quantum dot-based fluorescent biosensors. Biosensors, 2023, 13, 311. https://doi.org/10.3390/bios13030311

Y. Huang, Y. Zhang, Z. Dai, R. Miao, H. Chen. One-pot synthesis quantum dots-based fluorescent nanomaterial and its application. ACS Appl. Mater. Interfaces, 2024, 16, 37513. https://doi.org/10.1021/acsami.4c05117

J. Zhou, Y. Du, Q. Wang, R. Zhao, S. Liu, W. Li, S. Gai, H. Ding, D. Yang, P. Yang. Chiral melanin-like particle-inspired fluorescent silicon quanum dots for sensitively detecting inflammation in cells. ACS Appl. Nano Mater., 2023, 6, 15969. https://doi.org/10.1021/acsanm.3c02904

S. Pei, X. Hou, Y. Chi, W. Sun, F. Chen, K. Luo, S. Chai. Facile synthesis of highly efficient fluorescent silicon quantum dots used for highly sensitive sensor of tetracycline in honey samples and antibacterial agent. Food Chem. 2025, 467, 141844. https://doi.org/10.1016/j.foodchem.2024.141844

J. Lin, L. Xu, Y. Zheng, D. Wu, J. Yue. Imitation-mussel fluorescent silicon quantum dots for selective labelling and imaging of bacteria and biofilms. Front. Bioeng. Biotechnol. 2022, 10, 1. https://doi.org/10.3389/fbioe.2022.971682

H. Liang, F. Wu, R. Xia, W. Wu, S. Li, P. Di, M. Yang. Polyhedral oligomeric silsesquioxane (POSS)-silicon/carbon quantum dots nanocomposites for cell imaging. RCS Adv. 2024, 14, 25301. https://doi.org/10.1039/D4RA02987A

P. Chowdhury, D. Roy. Multi-emissive silicon quantum dots: synthesis, characteristics and their biological and analytical relevance. Bull. Mater. Sci. 2022, 45, 143. https://doi.org/10.1007/s12034-022-02706-4