Effect of Zirconia Crystalline Phases on Pt Dispersion and Catalytic Performance in Alkyne Hydrosilylation Heterogeneous Catalysis

Main Article Content

Prof. Kazu Okumura
Yuki Aoki
Anas Abdullahi
Dr. Mustapha Grema Mohammed
Kotaro Kawaguchi

Abstract

The crystalline phase of catalyst support plays a crucial role in governing the dispersion and activity of supported metal species. Herein, we investigate the influence of amorphous (a-), monoclinic (m-), and tetragonal ZrO2 (t-ZrO2) support on the performance of Pt/ZrO2 catalysts in the hydrosilylation of alkynes. Catalysts supported on m-ZrO2 and t-ZrO2 exhibited high Pt dispersion and catalytic activity, while those supported on a-ZrO2 showed poor performance due to encapsulation of Pt during heat treatment. When a-ZrO2 was calcined, it underwent a transformation to the monoclinic phase, which improved the dispersion and catalytic activity of the supported Pt. Structural and spectroscopic analyses including XRD, H2-TPR, Pt L3-edge EXAFS, and CO chemisorption revealed that the monoclinic and tetragonal phase uniquely stabilizes Pt at or near the surface. However, when comparing Pt/m-ZrO2 and Pt/t-ZrO2, the former showed higher dispersion and better reusability than the latter. These findings highlight the critical role of ZrO2 support crystallinity in tuning metal-support interactions and establish m-ZrO2 as promising platform for designing efficient hydrosilylation catalysts.

Article Details

How to Cite
(1)
Effect of Zirconia Crystalline Phases on Pt Dispersion and Catalytic Performance in Alkyne Hydrosilylation: Heterogeneous Catalysis. Innov. Chem. Mater. Sustain. 2025, 2 (2), 171-176. https://doi.org/10.63654/icms.2025.02171.
Section
Research Article

How to Cite

(1)
Effect of Zirconia Crystalline Phases on Pt Dispersion and Catalytic Performance in Alkyne Hydrosilylation: Heterogeneous Catalysis. Innov. Chem. Mater. Sustain. 2025, 2 (2), 171-176. https://doi.org/10.63654/icms.2025.02171.

References

B. Marciniec. Hydrosilylation and Related Reactions of Silicon Compounds. in Applied Homogeneous Catalysis with Organometallic Compounds, 2002, pp. 491-512, https://doi.org/10.1002/9783527651733.ch8

B. Marciniec. Catalysis by transition metal complexes of alkene silylation–recent progress and mechanistic implications. Coord. Chem. Rev., 2005, 249, 2374. https://doi.org/10.1016/j.ccr.2005.02.025

R. Murugavel, A. Voigt, M. G. Walawalkar, H. W. Roesky. Hetero- and Metallasiloxanes Derived from Silanediols, Disilanols, Silanetriols, and Trisilanols. Chem. Rev., 1996, 96, 2205. https://doi.org/10.1021/cr9500747

Y. K. Mirza, P. S. Bera, S. B. Mohite, A. K. Pandey, M. Bera. Silanes as a versatile hydride source for Ni–H catalysis: a promising tool for π-hydro functionalization. Org. Chem. Front., 2024, 11 4290, https://doi.org/10.1039/D4QO00860J

Y. Nakajima, S. Shimada. Hydrosilylation reaction of olefins: recent advances and perspectives. RSC Adv., 2015, 5, 20603. https://doi.org/10.1039/C4RA17281G

G. Pan, C. Hu, S. Hong, H. Li, D. Yu, C. Cui, Q. Li, N. Liang, Y. Jiang, L. Zheng, L. Jiang, Y. Liu. Biomimetic caged platinum catalyst for hydrosilylation reaction with high site selectivity. Nat. Commun., 2021, 12, 64. https://doi.org/10.1038/s41467-020-20233-w

Y. Gong, Q. Mou, D. Peng, F. Wang, J. Qin, J. Qin, Y. Ding. New insight into the mechanism of Pt(0)-catalyzed hydrosilylation reaction of (CH(3))(3)SiH with CH(2)CHSi(CH(3))(3). (in eng), J Mol Graph Model, 2022, 117, 108294. https://doi.org/10.1016/j.jmgm.2022.108294

I. E. Markó, S. Stérin, O. Buisine, G. Mignani, P. Branlard, B. Tinant, J. P. Declercq. Selective and Efficient Platinum(0)-Carbene Complexes As Hydrosilylation Catalysts. Science, 2002, 298, 204. https://doi.org/10.1126/science.1073338

B. P. Maliszewski, N. V. Tzouras, S. G. Guillet, M. Saab, M. Beliš, K. V. Hecke, F. Nahra, S. P. Nolan. A general protocol for the synthesis of Pt-NHC (NHC = N-heterocyclic carbene) hydrosilylation catalysts. Dalton Trans., 2020, 49, 14673. https://doi.org/10.1039/D0DT03480K

O. Buisine, G. B. Gelloz, J. F. Brière, S. Stérin, G. Mignani, P. Branlard, B. Tinant, J. P. Declercq, I. E. Markó. Second generation N-heterocyclic carbene–Pt(0) complexes as efficient catalysts for the hydrosilylation of alkenes. Chem. Commun., 2005, 30, 3856, https://doi.org/10.1039/B506369H

J. C. Bernhammer, H. V. Huynh. Platinum(II) Complexes with Thioether-Functionalized Benzimidazolin-2-ylidene Ligands: Synthesis, Structural Characterization, and Application in Hydroelementation Reactions. Organometallics, 2014, 33, 172. https://doi.org/10.1021/om400929t

A. J. Holwell. Global Release Liner Industry Conference 2008. Platinum Metals Review, 2008, 52, 243. https://doi.org/10.1595/147106708X366975

H. Yang, Z. Zhou, C. Tang, F. Chen. Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chi. Chem. Lett., 2024, 35, 109257. https://doi.org/10.1016/j.cclet.2023.109257

L. Zhang, M. Zhou, A. Wang, T. Zhang. Selective Hydrogenation over Supported Metal Catalysts: From Nanoparticles to Single Atoms. Chem. Rev., 2020, 120, 683. https://doi.org/10.1021/acs.chemrev.9b00230

X. Cui, K. Junge, X. Dai, C. Kreyenschulte, M. M. Pohl, S. Wohlrab, F. Shi, A. Brückner, M. Beller. Synthesis of Single Atom Based Heterogeneous Platinum Catalysts: High Selectivity and Activity for Hydrosilylation Reactions. ACS Cent. Sci., 2017, 3, 580. https://doi.org/10.1021/acscentsci.7b00105

Y. Chen, S. Ji, W. Sun, W. Chen, J. Dong, J. Wen, J. Zhang, Z. Li, L. Zheng, C. Chen, Q. Peng, D. Wang, Y. Li. Discovering Partially Charged Single-Atom Pt for Enhanced Anti-Markovnikov Alkene Hydrosilylation. J. Am. Chem. Soc., 2018, 140, 7407. https://doi.org/10.1021/jacs.8b03121

C. J. Kong, S. E. Gilliland, B. R. Clark, B. F. Gupton. Highly-active, graphene-supported platinum catalyst for the solventless hydrosilylation of olefins. Chem. Commun., 2018, 54, 13343. https://doi.org/10.1039/c8cc07641c

K. Okumura, R. Chihara, A. Abdullahi, M. Kato. Characterization of the active species in the aerobic oxidation of benzyl alcohol catalyzed by Ru/ZrO2. Mol. Catal., 2025, 573, 114820. https://doi.org/10.1016/j.mcat.2025.114820

T. Zhang, M. Li, P. Zheng, J. Li, J. Gao, H. He, F. Gu, W. Chen, Y. Ji, Z. Zhong, D. Bai, G. Xu, F. Su. Highly Efficient Hydrosilylation of Ethyne over Pt/ZrO2 Catalysts with Size-Dependent Metal–Support Interactions. Ind. Eng. Chem. Res., 2022, 61, 18703. https://doi.org/10.1021/acs.iecr.2c03553

M. Li, S. Zhao, J. Li, X. Chen, Y. Ji, H. Yu, D. Bai, G. Xu, Z. Zhong, F. Su. Partially charged single-atom Ru supported on ZrO2 nanocrystals for highly efficient ethylene hydrosilylation with triethoxysilane. Nano Res., 2022, 15, 5857. https://doi.org/10.1007/s12274-022-4227-4

K. Okumura, S. Aikawa, Y. Aoki, A. Abdullahi, M. G. Mohammed. Rational Design of Pt Supported Catalysts for Hydrosilylation: Influence of Support and Calcination Temperature: Heterogeneous Catalysis. Innov. Chem. Mater. Sustain., 2025, 2, 74. http://doi.org/10.63654/icms.2025.02074

K. Okumura, S. Sugihara, Y. Yasui, R. Sugiyama, A. Ahmed, A. Abdullahi. Solvent-Free Synthesis and Applications of Highly Dispersed Ruthenium Catalysts Prepared by Solid-Phase Mixing. ACS Omega, 2025, 10, 29510. https://doi.org/10.1021/acsomega.5c02830

E. Ramírez-Oliva, A. Hernández, J. M. Martínez-Rosales, A. Aguilar-Elguezabal, G. Herrera-Pérez, J. Cervantes. Effect of the synthetic method of Pt/MgO in the hydrosilylation of phenylacetylene. Arkivoc, 2006, 126.

V. G. Deshmane, Y. G. Adewuyi. Synthesis of thermally stable, high surface area, nanocrystalline mesoporous tetragonal zirconium dioxide (ZrO2): Effects of different process parameters. Micropor. Mesopor. Mater., 2012, 148, 88. https://doi.org/10.1016/j.micromeso.2011.07.012