Electrochemical Sensors for Quality Control in the Food and Beverage Industry Materials Science

Main Article Content

Prof. Kalisadhan Mukherjee
Suman Mondal
Snehangshu Paine

Abstract

Ensuring food safety and quality has become increasingly critical due to the rising complexity of the global food supply chain and the growing incidence of foodborne illnesses. This review aims to explore the potential of electrochemical sensors, enhanced with nanomaterials and artificial intelligence (AI), as efficient tools for detecting contaminants, additives, and adulterants in food and beverages. Traditional analytical techniques such as chromatography, spectroscopy, and titration though accurate, are often expensive, labour-intensive, and unsuitable for on-site or real-time analysis. In contrast, electrochemical sensors offer a rapid, low-cost, and portable alternative capable of providing accurate detection with minimal sample preparation. The incorporation of nanostructured materials like carbon-based nanomaterials, metal nanoparticles, and conductive polymers significantly boosts their sensitivity and selectivity by enhancing electron transfer and surface area. Furthermore, the integration of AI and machine learning (ML) techniques addresses major limitations of electrochemical sensors, including signal interference, overlapping analyte responses, and sensor drift. Algorithms such as SVM, CNNs, PCA, and PLSR enable multi-analyte detection, signal classification, and predictive maintenance, making real-time monitoring in complex food matrices feasible. Despite these advancements, challenges persist, including sensor fouling, matrix effects, lack of reproducibility, and difficulty in achieving regulatory compliance for industrial deployment. The review discusses these limitations in depth and outlines strategies to overcome them, such as adaptive calibration, surface modification, and AI-driven drift correction. Ultimately, this work highlights the transformative potential of AI-enhanced electrochemical sensors in modern food quality control and underscores the need for further development toward large-scale, industrial-ready applications.

Article Details

How to Cite
Electrochemical Sensors for Quality Control in the Food and Beverage Industry: Materials Science. (2025). Innovation of Chemistry & Materials for Sustainability, 2(2), 107-121. https://doi.org/10.63654/icms.2025.02107
Section
Review Article
Author Biographies

Prof. Kalisadhan Mukherjee, Department of Chemistry, Pandit Deendayal Energy University, Gandhinagar, Gujarat-382426, India

Kalisadhan Mukherjee is presently working as Associate Professor at Pandit Deendayal Energy University, Gandhinagar, India. He completed his Ph.D. from Materials Science Centre, Indian Institute of Technology, Kharagpur, India in 2012. In his Post-Ph.D. session, he was involved with the research and academic activities at CSIR-Central Mechanical Engineering Research Institute (CSIR-CMERI), Durgapur, India, Academy of Scientific and Innovative Research (AcSIR), New Delhi, George Washington University, Washington DC, USA. He is the recipient of prestigious Fulbright-Nehru Postdoctoral fellowship from United States India Educational Foundation (USIEF), Inspire Faculty fellowship from Department of Science and Technology, Govt. of India. Dr. Mukherjee has published more than 60 well renowned peer reviewed journal papers mostly as first or lead author. He has already supervised three Ph.D. theses. Currently, four Ph.D. students are working under his supervision. Eight patents are in his credit.

Suman Mondal, Department of Chemistry, Pandit Deendayal Energy University, Gandhinagar, Gujarat-382426, India

Suman Mondal did his M.Sc. in Chemistry from West Bengal State University, and is currently a Ph.D. student in the Department of Chemistry at Pandit Deendayal Energy University, Gandhinagar, Gujarat, India, working under the supervision of Prof. Kalisadhan Mukherjee. His research focuses on the development of novel nano materials for electrochemical sensors. 

Snehangshu Paine, Department of Chemistry, Pandit Deendayal Energy University, Gandhinagar, Gujarat-382426, India

Snehangshu Paine received his M.Sc. in Chemistry from the Indian Institute of Technology, Kanpur, and is currently a Ph.D. student in the Department of Chemistry at Pandit Deendayal Energy University, Gandhinagar, Gujarat, India. He is also employed as a Senior Chemist in ONGC Limited, India. He is conducting his doctoral research under the supervision of Dr. Kalisadhan Mukherjee. His research interests include the synthesis and characterization of metal oxide nanoparticles with applications in toxic vapor sensing and enhanced oil recovery.

How to Cite

Electrochemical Sensors for Quality Control in the Food and Beverage Industry: Materials Science. (2025). Innovation of Chemistry & Materials for Sustainability, 2(2), 107-121. https://doi.org/10.63654/icms.2025.02107

References

H. Niu, M. Zhang, D. Shen, A. S. Mujumdar, Y. Ma. Sensing materials for fresh food quality deterioration measurement: a review of research progress and application in supply chain. Crit Rev Food Sci Nutr. 2024, 64, 8114. http://doi.org/10.1080/10408398.2023.2195939.

K. Fukuda. (2015): Food safety in a globalized world. (SciELO Public Health), pp 212-212.

Organization, W. H. (2022): WHO global strategy for food safety 2022-2030: towards stronger food safety systems and global cooperation. (World Health Organization).

H. Peng, S. Kong, X. Deng, Q. Deng, F. Qi, C. Liu, R. Tang. Development of a Ratiometric Fluorescent Probe with Zero Cross-Talk for the Detection of SO2 Derivatives in Foods and Live Cells. J. Agric. Food Chem. 2023, 71, 14322. http://doi.org/10.1021/acs.jafc.3c04056.

G. Casado-Hidalgo, G. Martinez-Garcia, S. Morante-Zarcero, D. Pérez-Quintanilla, I. Sierra. New Validated Method for the Determination of Six Opium Alkaloids in Poppy Seed-Containing Bakery Products by High-Performance Liquid Chromatography-Tandem Mass Spectrometry after Magnetic Solid-Phase Extraction. J. Agric. Food Chem. 2022, 70, 7594. http://doi.org/10.1021/acs.jafc.2c01664.

I. Burgos-Luján, A. Z. Tong, Determination of Phytic Acid in Juices and Milks by Developing a Quick Complexometric-Titration Method. Food Anal. Methods 2014, 8, 1836. http://doi.org/10.1007/s12161-014-0075-5.

R. R. Guo, G. S. M. Lageveen-Kammeijer, W. Wang, H. Dalebout, W. Zhang, M. Wuhrer, L. Liu, B. Heijs, J. Voglmeir. Analysis of Immunogenic Galactose-alpha-1,3-galactose-Containing N-Glycans in Beef, Mutton, and Pork Tenderloin by Combining Matrix-Assisted Laser Desorption/Ionization-Mass Spectroscopy and Capillary Electrophoresis Hyphenated with Mass Spectrometry via Electrospray Ionization. J. Agric. Food Chem. 2023, 71, 4184. http://doi.org/10.1021/acs.jafc.2c08067.

Q. Qu, L. Jin, Application of nuclear magnetic resonance in food analysis. Food Sci. and Technol. 2022, 42, e43622. http://doi.org/10.1590/fst.43622.

Z. Wang, L. Wei, S. Ruan, Y. Chen. CRISPR/Cas12a-Assisted Chemiluminescence Sensor for Aflatoxin B1 Detection in Cereal Based on Functional Nucleic Acid and In-Pipet Rolling Circle Amplification. J. Agric. Food Chem. 2023, 71, 4417. http://doi.org/10.1021/acs.jafc.3c00341.

M. V. Sullivan, A. Henderson, R. A. Hand, N. W. Turner. A molecularly imprinted polymer nanoparticle-based surface plasmon resonance sensor platform for antibiotic detection in river water and milk. Anal Bioanal Chem 2022, 414, 3687. http://doi.org/10.1007/s00216-022-04012-8.

W. Zhang, R. Wang, F. Luo, P. Wang, Z. Lin. Miniaturized electrochemical sensors and their point-of-care applications. Chin. Chem. Lett. 2020, 31, 589. http://doi.org/10.1016/j.cclet.2019.09.022.

S. K. Amit, M. M. Uddin, R. Rahman, S. M. Rezwanul Islam, M. S. Khan. A review on mechanisms and commercial aspects of food preservation and processing. Agriculture & Food Security. 2017, 6, 1. http://doi.org/10.1186/s40066-017-0130-8.

P. Jackman, D. -W. Sun. Recent advances in image processing using image texture features for food quality assessment. Trends Food Science Technol 2013, 29, 35. http://doi.org/10.1016/j.tifs.2012.08.008.

V. Innamorato, F. Longobardi, S. Cervellieri, M. Cefola, B. Pace, I. Capotorto, V. Gallo, A. Rizzuti, A. F. Logrieco, V. Lippolis. Quality evaluation of table grapes during storage by using 1H NMR, LC-HRMS, MS-eNose and multivariate statistical analysis. Food Chemistry. 2020, 315, 126247. http://doi.org/10.1016/j.foodchem.2020.126247.

L. Jacxsens, J. Kussaga, P. Luning, M. Van der Spiegel, F. Devlieghere, M. Uyttendaele. A microbial assessment scheme to measure microbial performance of food safety management systems. Int. J. Food Microbiol. 2009, 134, 113. http://doi.org/10.1016/j.ijfoodmicro.2009.02.018.

P. Visciano, M. Schirone, (2020): Rapid methods for assessing food safety and quality. (MDPI), p 533.

J. Baranwal, B. Barse, G. Gatto, G. Broncova, A. Kumar. Electrochemical sensors and their applications: A review. Chemosensors. 2022, 10, 363. http://doi.org/10.3390/chemosensors10090363.

M. Javaid, A. Haleem, R. P. Singh, S. Rab, R. Suman. Significance of sensors for industry 4.0: Roles, capabilities, and applications. Sensors International. 2021, 2, 100110. http://doi.org/10.1016/j.sintl.2021.100110.

T. Xiao, J. Huang, D. Wang, T. Meng, X. Yang. Au and Au-Based nanomaterials: Synthesis and recent progress in electrochemical sensor applications. Talanta 2020, 206, 120210. http://doi.org/10.1016/j.talanta.2019.120210.

A. J. Bard, L. R. Faulkner, H. S. White, (2022): Electrochemical methods: fundamentals and applications.(John Wiley & Sons).

M. del Valle. Electronic Tongues Employing Electrochemical Sensors. Electroanalysis. 2010, 22, 1539. http://doi.org/10.1002/elan.201000013.

X. Weng, S. Neethirajan. Ensuring food safety: Quality monitoring using microfluidics. Trends Food Science Technol 2017, 65, 10. http://doi.org/10.1016/j.tifs.2017.04.015.

Y. Picó, Chromatography–mass spectrometry: Recent evolution and current trends in environmental science. Curr Opin Environ Sci Health 2020, 18, 47. http://doi.org/10.1016/j.coesh.2020.07.002.

S. Malik, J. Singh, R. Goyat, Y. Saharan, V. Chaudhry, A. Umar, A. A. Ibrahim, S. Akbar, S. Ameen, S. Baskoutas. Nanomaterials-based biosensor and their applications: A review. Heliyon 2023, 9, e19929. http://doi.org/10.1016/j.heliyon.2023.e19929.

R. Singh, R. Gupta, D. Bansal, R. Bhateria, M. Sharma. A review on recent trends and future developments in electrochemical sensing. ACS omega 2024, 9, 7336. https://doi.org/10.1021/acsomega.3c08060

N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart, J. L. Dempsey. A Practical Beginner’s Guide to Cyclic Voltammetry. J. Chem. Edu. 2017, 95, 197. http://doi.org/10.1021/acs.jchemed.7b00361.

A. Kumar, J. M. Gonçalves, A. Sukeri, K. Araki, M. Bertotti. Correlating surface growth of nanoporous gold with electrodeposition parameters to optimize amperometric sensing of nitrite. Sens. Actuators B-Chem. 2018, 263, 237. http://doi.org/10.1016/j.snb.2018.02.125.

H. R. Akbari Hasanjani, K. Zarei. An electrochemical sensor for attomolar determination of mercury(II) using DNA/poly-L-methionine-gold nanoparticles/pencil graphite electrode. Biosens Bioelectron. 2019, 128, 1. http://doi.org/10.1016/j.bios.2018.12.039.

M. A. Deshmukh, B. -C. Kang, T. -J. Ha. Non-enzymatic electrochemical glucose sensors based on polyaniline/reduced-graphene-oxide nanocomposites functionalized with silver nanoparticles. J. Mater. Chem. C. 2020, 8, 5112. http://doi.org/10.1039/c9tc06836h.

M. Guler, V. Turkoglu, A. Bulut, M. Zahmakiran. Electrochemical sensing of hydrogen peroxide using Pd@Ag bimetallic nanoparticles decorated functionalized reduced graphene oxide. Electrochim. Acta 2018, 263, 118. http://doi.org/10.1016/j.electacta.2018.01.048.

V. V. Pavlishchuk, A. W. Addison, Conversion constants for redox potentials measured versus different reference electrodes in acetonitrile solutions at 25°C. Inorg. Chim. Acta 2000, 298, 97. http://doi.org/10.1016/s0020-1693(99)00407-7.

R. R. Gagne, C. A. Koval, G. C. Lisensky. Ferrocene as an internal standard for electrochemical measurements. Inorg. Chem., 2002, 19, 2854. http://doi.org/10.1021/ic50211a080.

S. Trasatti. The Absolute Electrode Potential - an Explanatory Note (Recommendations 1986). Pure & Appl. Chem., 1986, 58, 955. http://dx.doi.org/10.1351/pac198658070955

C. G. Zoski (2006): Handbook of electrochemistry.(Elsevier).

Q. Li, J. Zhang, Q. Li, G. Li, X. Tian, Z. Luo, F. Qiao, X. Wu, J. Zhang. Review of Printed Electrodes for Flexible Devices. Front. Mater., 2019, 5, 77. http://doi.org/10.3389/fmats.2018.00077

A. M. Nageib, A. A. Halim, A. N. Nordin, F. Ali. Recent Applications of Molecularly Imprinted Polymers (MIPs) on Screen-Printed Electrodes for Pesticide Detection. J. Electrochem. Sci. Technol., 2023, 14, 1. http://doi.org/10.33961/jecst.2022.00654.

J. W. Schultze, Book Review: Analytical Electrochemistry. Angew. Chem. Int. Ed., 2003, 35, 1998. http://doi.org/10.1002/anie.199619981.

N. Tiwari, S. Chatterjee, K. Kaswan, J. -H. Chung, K. -P. Fan, Z. -H. Lin. Recent advancements in sampling, power management strategies and development in applications for non-invasive wearable electrochemical sensors. J Electroanal Chem., 2022, 907, 116064. https://doi.org/10.1016/j.jelechem.2022.116064

Z. Li, C. Liu, V. Sarpong, Z. Gu. Multisegment nanowire/nanoparticle hybrid arrays as electrochemical biosensors for simultaneous detection of antibiotics. Biosens Bioelectron., 2019, 126, 632. http://doi.org/10.1016/j.bios.2018.10.025.

A. Muthumariyappan, U. Rajaji, S. -M. Chen, N. Baskaran, T. -W. Chen, R. J. Ramalingam. Sonochemical synthesis of perovskite-type barium titanate nanoparticles decorated on reduced graphene oxide nanosheets as an effective electrode material for the rapid determination of ractopamine in meat samples. Ultrason. Sonochem., 2019, 56, 318. http://doi.org/10.1016/j.ultsonch.2019.04.005.

R. K. R. Gajjala, S. K. Palathedath. Cu@Pd core-shell nanostructures for highly sensitive and selective amperometric analysis of histamine. Biosens Bioelectron., 2018, 102, 242. http://doi.org/10.1016/j.bios.2017.11.038.

Y. Li, D. Liu, S. Meng, T. Chen, C. Liu, T. You. Dual-ratiometric electrochemical aptasensor enabled by programmable dynamic range: Application for threshold-based detection of aflatoxin B1. Biosens Bioelectron., 2022, 195, 113634. http://doi.org/10.1016/j.bios.2021.113634.

T. Yang, R. Yu, Y. Yan, H. Zeng, S. Luo, N. Liu, A. Morrin, X. Luo, W. Li. A review of ratiometric electrochemical sensors: From design schemes to future prospects. Sens. Actuators B-Chem., 2018, 274, 501. http://doi.org/10.1016/j.snb.2018.07.138.

H. Yin, Y. Zhang, H. Dong, L. Liu, X. Wang, Y. Zhang, M. Xu, Y. Zhou. Self-Calibrating Electrochemical Sensors Based on Uniformly Dispersed Ag Nanoclusters in Nitrogen-Doped Carbon Sheets for Determination of Nitrite. ACS Appl. Nano Mater., 2022, 5, 9737. http://doi.org/10.1021/acsanm.2c01949.

Q. Han, H. Wang, J. Wang, Multi‐mode/signal biosensors: Electrochemical integrated sensing techniques. Adv. Funct. Mater., 2024, 34, 2403122. http://doi.org/10.1002/adfm.202403122.

M. Mori, K. Tanaka, Q. Xu, M. Ikedo, H. Taoda, W. Hu. Highly sensitive determination of hydrazine ion by ion-exclusion chromatography with ion-exchange enhancement of conductivity detection. J. Chromatogr. A., 2004, 1039, 135. http://doi.org/10.1016/j.chroma.2004.03.075.

U. E. P. Agency (1992): Integrated risk information system (IRIS). (Environmental Criteria and Assessment Office Cincinnati, OH.

G. Choudhary, H. Hansen. Human health perspective on environmental exposure to hydrazines: A review. Chemosphere, 1998, 37, 801. http://doi.org/10.1016/s0045-6535(98)00088-5.

J. Zhao, M. Zhu, M. Zheng, Y. Tang, Y. Chen, T. Lu. Electrocatalytic oxidation and detection of hydrazine at carbon nanotube-supported palladium nanoparticles in strong acidic solution conditions. Electrochim. Acta, 2011, 56, 4930. http://doi.org/10.1016/j.electacta.2011.03.014.

B. K. Jena, C. R. Raj. Ultrasensitive Nanostructured Platform for the Electrochemical Sensing of Hydrazine. J. Phys. Chem. C 2007, 111, 6228. http://doi.org/10.1021/jp0700837.

P. K. Kannan, S. A. Moshkalev, C. S. Rout. Electrochemical sensing of hydrazine using multilayer graphene nanobelts. RSC Adv. 2016, 6, 11329. http://doi.org/10.1039/c5ra24912k.

M. J. Benotti, R. A. Trenholm, B. J. Vanderford, J. C. Holady, B. D. Stanford, S. A. Snyder. Pharmaceuticals and endocrine disrupting compounds in US drinking water. Environ. Sci. Technol., 2009, 43, 597. http://doi.org/10.1021/es801845a.

D. Chen, K. Kannan, H. Tan, Z. Zheng, Y. -L. Feng, Y. Wu, M. Widelka. Bisphenol Analogues Other Than BPA: Environmental Occurrence, Human Exposure, and Toxicity-A Review. Environ. Sci. Technol., 2016, 50, 5438. http://doi.org/10.1021/acs.est.5b05387.

M. Thoene, L. Rytel, N. Nowicka, J. Wojtkiewicz. The state of bisphenol research in the lesser developed countries of the EU: a mini-review. Toxicol. Res. (Camb). 2018, 7, 371. http://doi.org/10.1039/c8tx00064f.

J. R. Rochester. Bisphenol A and human health: a review of the literature. Reprod. Toxicol., 2013, 42, 132. http://doi.org/10.1016/j.reprotox.2013.08.008.

M. Giulivo, M. L. de Alda, E. Capri, D. Barceló. Human exposure to endocrine disrupting compounds: Their role in reproductive systems, metabolic syndrome and breast cancer. A review. Environ. Res., 2016, 151, 251. http://doi.org/10.1016/j.envres.2016.07.011.

A. Ziv-Gal, J. A. Flaws. Evidence for bisphenol A-induced female infertility: a review (2007-2016). Fertil Steril., 2016, 106, 827. http://doi.org/10.1016/j.fertnstert.2016.06.027.

H. Yin, Y. Zhou, J. Xu, S. Ai, L. Cui, L. Zhu. Amperometric biosensor based on tyrosinase immobilized onto multiwalled carbon nanotubes-cobalt phthalocyanine-silk fibroin film and its application to determine bisphenol A. Anal. Chim. Acta, 2010, 659, 144. http://doi.org/10.1016/j.aca.2009.11.051.

A. U. Alam, M. J. Deen. Bisphenol A Electrochemical Sensor Using Graphene Oxide and beta-Cyclodextrin-Functionalized Multi-Walled Carbon Nanotubes. Anal. Chem., 2020, 92, 5532. http://doi.org/10.1021/acs.analchem.0c00402.

N. B. Messaoud, M. E. Ghica, C. Dridi, M. B. Ali, C. M. A. Brett. Electrochemical sensor based on multiwalled carbon nanotube and gold nanoparticle modified electrode for the sensitive detection of bisphenol A. Sens. Actuators B-Chem., 2017, 253, 513. http://doi.org/10.1016/j.snb.2017.06.160.

F. Mo, J. Xie, T. Wu, M. Liu, Y. Zhang, S. Yao. A sensitive electrochemical sensor for bisphenol A on the basis of the AuPd incorporated carboxylic multi-walled carbon nanotubes. Food Chem., 2019, 292, 253. http://doi.org/10.1016/j.foodchem.2019.04.034.

M. Kuznowicz, T. Rębiś, A. Jędrzak, G. Nowaczyk, M. Szybowicz, T. Jesionowski. Glucose determination using amperometric non-enzymatic sensor based on electroactive poly(caffeic acid)@MWCNT decorated with CuO nanoparticles. Mikrochim Acta., 2022, 189, 159. http://doi.org/10.1007/s00604-022-05256-y.

G. A. Mohammadi, I. Sheikhshoaie, H. Beitollahi, M. R. Aflatoonian, S. Tajik. A reliable electrochemical approach for detection of sulphite with Tl-doped in Mn3O4 nanostructures and ionic liquid-modified carbon paste electrode. International Journal of Environmental Analytical Chemistry, 2021, 103, 6526. http://doi.org/10.1080/03067319.2021.1958209.

K. M. M. Espíndola, R. G. Ferreira, L. E. M. Narvaez, A. C. R. S. Rosario, A. H. M. da Silva, A. G. B. Silva, A. P. O. Vieira, M. C. Monteiro. Chemical and Pharmacological Aspects of Caffeic Acid and Its Activity in Hepatocarcinoma. Front. Oncol., 2019, 9, 541. http://doi.org/10.3389/fonc.2019.00541.

E. Pinho, G. Soares, M. Henriques. Evaluation of antibacterial activity of caffeic acid encapsulated by beta-cyclodextrins. J Microencapsul., 2015, 32, 804. http://doi.org/10.3109/02652048.2015.1094531.

Gulcin, I. Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid). Toxicology, 2006, 217, 213. http://doi.org/10.1016/j.tox.2005.09.011.

M. Alam, S. Ahmed, A. M. Elasbali, M. Adnan, S. Alam, M. I. Hassan, V. R. Pasupuleti. Therapeutic Implications of Caffeic Acid in Cancer and Neurological Diseases. Front. Oncol. 2022, 12, 860508. http://doi.org/10.3389/fonc.2022.860508.

B. Parasuraman, S. K. Chinnapayan, H. Rangaraju, S. Paramasivam, S. Sangaraju, P. Thangavelu, C. -H. Huang. Rapid detection of caffeic acid in food beverages using a non-enzymatic electrochemical sensor based on a Bi2S3/CNF nanocomposite. Sustainable Food Technol., 2024, 2, 717. http://doi.org/10.1039/d4fb00015c.

R. Karthik, J. V. Kumar, S. -M Chen, P. S. Kumar, V. Selvam, V. Muthuraj. A selective electrochemical sensor for caffeic acid and photocatalyst for metronidazole drug pollutant - A dual role by rod-like SrV2O6. Sci Rep. 2017, 7, 7254. http://doi.org/10.1038/s41598-017-07423-1.

G. Di Carlo, A. Curulli, R. G. Toro, C. Bianchini, T. De Caro, G. Padeletti, D. Zane, G. M. Ingo. Green synthesis of gold-chitosan nanocomposites for caffeic acid sensing. Langmuir 2012, 28, 5471. http://doi.org/10.1021/la204924d.

I. H. A. Badr, A. Plata, P. Molina, M. Alajarı́n, A. Vidal, L. G. Bachas. Hydrogen sulfite optical sensor based on a lipophilic guanidinium ionophore. Anal. Chim. Acta 1999, 388, 63. http://doi.org/10.1016/s0003-2670(99)00023-9.

R. Rawal, S. Chawla, T. Dahiya, C. S. Pundir. Development of an amperometric sulfite biosensor based on a gold nanoparticles/chitosan/multiwalled carbon nanotubes/polyaniline-modified gold electrode. Anal Bioanal Chem., 2011, 401, 2599. http://doi.org/10.1007/s00216-011-5325-4.

(a) V. Sudha, G. Murugadoss, R. Thangamuthu. Structural and morphological tuning of Cu-based metal oxide nanoparticles by a facile chemical method and highly electrochemical sensing of sulphite. Sci Rep., 2021, 11, 3413. https://doi.org/10.1038/s41598-021-82741-z (b) T. R. L. Dadamos, M. F. S. Teixeira. Electrochemical sensor for sulfite determination based on a nanostructured copper-salen film modified electrode. Electrochim. Acta., 2009, 54, 4552. https://doi.org/10.1016/j.electacta.2009.03.045

E. M. Silva, R. M. Takeuchi, A. L. Santos, Carbon nanotubes for voltammetric determination of sulphite in some beverages. Food Chem. 2015, 173, 763. http://doi.org/10.1016/j.foodchem.2014.10.106.

X. -R. Li, F. -Y. Kong, J. Liu, T. -M. Liang, J. -J. Xu, H. -Y. Chen. Synthesis of Potassium-Modified Graphene and Its Application in Nitrite-Selective Sensing. Adv. Funct. Mater. 2012, 22, 1981. http://doi.org/10.1002/adfm.201103025.

X. J. Li, J. F. Ping, Y. B. Ying, Recent developments in carbon nanomaterial-enabled electrochemical sensors for nitrite detection. Trac-Trend Anal. Chem., 2019, 113, 1. http://doi.org/10.1016/j.trac.2019.01.008.

Q. -H. Wang, L. -J. Yu, Y. Liu, L. Lin, R. -g. Lu, J. -p. Zhu, L. He, Z. -L. Lu. Methods for the detection and determination of nitrite and nitrate: A review. Talanta 2017, 165, 709. http://doi.org/10.1016/j.talanta.2016.12.044.

Y. Zhang, W. Zhu, Y. Wang, Y. Ma, J. Sun, T. Li, J. Wang, X. Yue, S. Ouyang, Y. Ji. High-performance electrochemical nitrite sensing enabled using commercial carbon fiber cloth. Inorg. Chem. Front., 2019, 6, 1501-1506. http://doi.org/10.1039/c9qi00255c.

Y. Dai, J. Huang, H. Zhang, C. C. Liu. Highly sensitive electrochemical analysis of tunnel structured MnO2 nanoparticle-based sensors on the oxidation of nitrite. Sens. Actuators B-Chem., 2019, 281, 746. http://doi.org/10.1016/j.snb.2018.11.014.

R. -I. Stefan-van Staden, M. Mincu, J. Frederick van Staden, L. A. Gugoasa. Molecular Recognition of Nitrites and Nitrates in Water Samples Using Graphene-Based Stochastic Microsensors. Anal Chem. 2018, 90, 9997. http://doi.org/10.1021/acs.analchem.8b02467.

R. Wang, Z. Wang, X. Xiang, R. Zhang, X. Shic, X. Sun. MnO2 nanoarrays: an efficient catalyst electrode for nitrite electroreduction toward sensing and NH3 synthesis applications. Chem. Commun., 2018, 54, 10340. http://doi.org/10.1039/c8cc05837g.

Y. Zhang, D. Zhao, W. Zhu, W. Zhang, Z. Yue, J. Wang, R. Wang, D. Zhang, J. Wang, G. Zhang. Engineering multi-stage nickel oxide rod-on-sheet nanoarrays on Ni foam: A superior catalytic electrode for ultrahigh-performance electrochemical sensing of glucos. Sens. Actuators B-Chem. 2018, 255, 416. http://doi.org/10.1016/j.snb.2017.08.078.

W. Zhu, Y. Zhang, J. Gong, Y. Ma, J. Sun, T. Li, J. Wang. Surface Engineering of Carbon Fiber Paper toward Exceptionally High-Performance and Stable Electrochemical Nitrite Sensing. ACS Sens., 2019, 4, 2980. http://doi.org/10.1021/acssensors.9b01474.

X. Chen, J. Cui, S. Wu, X. Xia, L. Yang, D. Sun, X. Xu, X. Zhu. Template-Sacrificing Strategy for Three-Dimensional CoMo-Layered Double-Hydroxide Nanopolyhedra for Electrochemical Sensing of Nitrite. ACS Appl. Nano Mater. 2021, 4, 1867. http://doi.org/10.1021/acsanm.0c03250.

M. A. Z. Chowdhury, M. A. Oehlschlaeger. Artificial Intelligence in Gas Sensing: A Review. ACS Sens., 2025, 10, 1538. http://doi.org/10.1021/acssensors.4c02272.

A. Mammone, M. Turchi, N. Cristianini. Support vector machines. WIREs Comput Stat. 2009, 1, 283. http://doi.org/10.1002/wics.49.

Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing. 2016, 114, 24. http://doi.org/10.1016/j.isprsjprs.2016.01.011.

J. Laaksonen, E. Oja (1996): Classification with learning k-nearest neighbors. In Proceedings of international conference on neural networks (ICNN'96). (IEEE), pp 1480-1483.

A. Khan, A. Sohail, U. Zahoora, A. S. Qureshi. A survey of the recent architectures of deep convolutional neural networks. Artif Intell Rev., 2020, 53, 5455. http://doi.org/10.1007/s10462-020-09825-6.

A. Maćkiewicz, W. Ratajczak. Principal components analysis (PCA). Computers & Geosciences. 1993, 19, 303. https://doi.org/10.1016/0098-3004(93)90090-R

H. Abdi. Partial least square regression (PLS regression). Encyclopedia for research methods for the social sciences. 2003, 6, 792

P. Mathiyalagan, S. Pokhriyal. Improvements in Industrial Sensors: Increasing Reliability and Efficiency. Proceedings of the 3rd International Conference on Optimization Techniques in the Field of Engineering (ICOFE-2024), SSRN Electronic Journal. 2025 http://doi.org/10.2139/ssrn.5083750.

H. H. Hansen. Predictive maintenance for power plants. 2024. https://orbit.dtu.dk/en/publications/predictive-maintenance-for-power-plants

C. Wang, L. Zhang, Z. Guo, J. Xu, H. Wang, K. Zhai, X. Zhuo. A novel hydrazine electrochemical sensor based on the high specific surface area graphene. Microchim Acta. 2010, 169, 1. http://doi.org/10.1007/s00604-010-0304-6.

S. K. Kim, Y. N. Jeong, M. S. Ahmed, J. -M. You, H. C. Choi, S. Jeon. Electrocatalytic determination of hydrazine by a glassy carbon electrode modified with PEDOP/MWCNTs-Pd nanoparticles. Sens. Actuators B-Chem. 2011, 153, 246. http://doi.org/10.1016/j.snb.2010.10.039.

S. Zhao, L. Wang, T. Wang, Q. Han, S. Xu. A high-performance hydrazine electrochemical sensor based on gold nanoparticles/single-walled carbon nanohorns composite film. Appl. Surf. Sci. 2016, 369, 36. http://doi.org/10.1016/j.apsusc.2016.02.013.

Z. Zhao, Y. Sun, P. Li, W. Zhang, K. Lian, J. Hu, Y. Chen. Preparation and characterization of AuNPs/CNTs-ErGO electrochemical sensors for highly sensitive detection of hydrazine. Talanta, 2016, 158, 283. http://doi.org/10.1016/j.talanta.2016.05.065.

N. Maleki, A. Safavi, E. Farjami, F. Tajabadi. Palladium nanoparticle decorated carbon ionic liquid electrode for highly efficient electrocatalytic oxidation and determination of hydrazine. Anal. Chim. Acta. 2008, 611, 151. http://doi.org/10.1016/j.aca.2008.01.075.

H. Karimi-Maleh, M. Moazampour, A. A. Ensafi, S. Mallakpour, M. Hatami. An electrochemical nanocomposite modified carbon paste electrode as a sensor for simultaneous determination of hydrazine and phenol in water and wastewater samples. Environ. Sci. Pollut. Res. Int., 2014, 21, 5879. http://doi.org/10.1007/s11356-014-2529-0.

E. R. Santana, C. A. de Lima, J. V. Piovesan, A. Spinelli. An original ferroferric oxide and gold nanoparticles-modified glassy carbon electrode for the determination of bisphenol A. Sens. Actuators B-Chem. 2017, 240, 487. http://doi.org/10.1016/j.snb.2016.09.003.

B. Su, H. Shao, N. Li, X. Chen, Z. Cai, X. Chen. A sensitive bisphenol A voltammetric sensor relying on AuPd nanoparticles/graphene composites modified glassy carbon electrode. Talanta, 2017, 166, 126. http://doi.org/10.1016/j.talanta.2017.01.049.

R. Shi, J. Liang, Z. Zhao, A. Liu, Y. Tian. An electrochemical bisphenol A sensor based on one step electrochemical reduction of cuprous oxide wrapped graphene oxide nanoparticles modified electrode. Talanta, 2017, 169, 37. http://doi.org/10.1016/j.talanta.2017.03.042.

Y. Zhang, Y. Liu, J. He, P. Pang, Y. Gao, Q. Hu. Electrochemical Behavior of Caffeic Acid Assayed with Gold Nanoparticles/Graphene Nanosheets Modified Glassy Carbon Electrode. Electroanalysis, 2013, 25, 1230. http://doi.org/10.1002/elan.201200587.

C. Bianchini, A. Curulli, M. Pasquali, D. Zane. Determination of caffeic acid in wine using PEDOT film modified electrode. Food Chem., 2014, 156, 81. http://doi.org/10.1016/j.foodchem.2014.01.074.

A. T. Ezhil Vilian, S. -M. Chen, Y. -H. Chen, M. A. Ali, F. M. A. Al-Hemaid. An electrocatalytic oxidation and voltammetric method using a chemically reduced graphene oxide film for the determination of caffeic acid. J. Colloid. Interface Sci., 2014, 423, 33. http://doi.org/10.1016/j.jcis.2014.02.016.

H. Filik, G. Çetintaş, A. A. Avan, S. Aydar, S. N. Koç, İ. Boz. Square-wave stripping voltammetric determination of caffeic acid on electrochemically reduced graphene oxide-Nafion composite film. Talanta, 2013, 116, 245. http://doi.org/10.1016/j.talanta.2013.05.031.

F. R. F. Leite, W. D. R. Santos, L. T. Kubota. Selective determination of caffeic acid in wines with electrochemical sensor based on molecularly imprinted siloxanes. S Sens. Actuators B-Chem., 2014, 193, 238. http://doi.org/10.1016/j.snb.2013.11.028.

Z. Liu, J. Xu, R. Yue, T. Yang, L. Gao. Facile one-pot synthesis of Au-PEDOT/rGO nanocomposite for highly sensitive detection of caffeic acid in red wine sample. Electrochim. Acta., 2016, 196, 1. http://doi.org/10.1016/j.electacta.2016.02.178.

K. Tyszczuk, A. Skalska-Kamniska, A. Wozniak. Voltammetric method using a lead film electrode for the determination of caffeic acid in a plant material. Food Chem., 2011, 125, 1498. http://doi.org/10.1016/j.foodchem.2010.10.075.

G. Magarelli, J. G. da Silva, I. A. de Sousa Filho, I. S. D. Lopes, J. R. SouzaDe, L. V. Hoffmann, C. S. P. de Castro. Development and validation of a voltammetric method for determination of total phenolic acids in cotton cultivars. Microchem. J., 2013, 109, 23. http://doi.org/10.1016/j.microc.2012.05.014.

L. F. da Silva, N. Ramos Stradiotto, H. P. Oliveira, Determination of Caffeic Acid in Red Wine by Voltammetric Method. Electroanalysis, 2008, 20, 1252. http://doi.org/10.1002/elan.200704175.

S. C. Fernandes, I. R. W. Z. de Oliveira, I. C. Vieira. A green bean homogenate immobilized on chemically crosslinked chitin for determination of caffeic acid in white wine. Enzyme Microb. Technol., 2007, 40, 661. http://doi.org/10.1016/j.enzmictec.2006.05.023.

E. Dinckaya, M. Sezginturk, E. Akyilmaz, F. N. Ertaş. Sulfite determination using sulfite oxidase biosensor based glassy carbon electrode coated with thin mercury film. Food Chem., 2007, 101, 1540. http://doi.org/10.1016/j.foodchem.2006.04.006.

H. Beitollahi, S. Tajik, P. Biparva. Electrochemical determination of sulfite and phenol using a carbon paste electrode modified with ionic liquids and graphene nanosheets: application to determination of sulfite and phenol in real samples. Measurement, 2014, 56, 170. http://doi.org/10.1016/j.measurement.2014.06.011.

T. Garcia, E. Casero. Electrochemical sensor for sulfite determination based on iron hexacyanoferrate film modified electrodes. Sens. Actuators B-Chem., 2005, 106, 803. http://doi.org/10.1016/j.snb.2004.09.033.

T. R. L. Dadamos, M. F. S. Teixeira. Electrochemical sensor for sulfite determination based on a nanostructured copper-salen film modified electrode. Electrochim. Acta., 2009, 54, 4552. http://doi.org/10.1016/j.electacta.2009.03.045.

H. Zhou, W. Yang, C. Sun. Amperometric sulfite sensor based on multiwalled carbon nanotubes/ferrocene-branched chitosan composites. Talanta, 2008, 77, 366. http://doi.org/10.1016/j.talanta.2008.06.036.

R. Rawal, S. Chawla, C. S. Pundir. An electrochemical sulfite biosensor based on gold coated magnetic nanoparticles modified gold electrode. Biosens. Bioelectron., 2012, 31, 144. http://doi.org/10.1016/j.bios.2011.10.007.

R. Rawal, C. S. Pundir. Development of an amperometric sulfite biosensor based on SOx/PBNPs/PPY modified ITO electrode. Int. J. Biol. Macromol., 2012, 51, 449. http://doi.org/10.1016/j.ijbiomac.2012.06.008.

A. Safavi, N. Maleki, S. Momeni, F. Tajabadi. Highly improved electrocatalytic behavior of sulfite at carbon ionic liquid electrode: application to the analysis of some real samples. Anal. Chim. Acta., 2008, 625, 8. http://doi.org/10.1016/j.aca.2008.07.007.

X. -R. Li, J. Liu, F. -Y. Kong, X. -C. Liu, J. -J. Xu, H. -Y. Chen. Potassium-doped graphene for simultaneous determination of nitrite and sulfite in polluted water. Electrochem. Commun., 2012, 20, 109. http://doi.org/10.1016/j.elecom.2012.04.014.

X. Huang, Y. Li, Y. Chen, L. Wang. Electrochemical determination of nitrite and iodate by use of gold nanoparticles/poly (3-methylthiophene) composites coated glassy carbon electrode. Sens. Actuators B-Chem., 2008, 134, 780. http://doi.org/10.1016/j.snb.2008.06.028.

J. Jiang, W. Fan, X. Du. Nitrite electrochemical biosensing based on coupled graphene and gold nanoparticles. Biosens. Bioelectron., 2014, 51, 343. http://doi.org/10.1016/j.bios.2013.08.007.

A. Afkhami, F. Soltani-Felehgari, T. Madrakian, H. Ghaedi. Surface decoration of multi-walled carbon nanotubes modified carbon paste electrode with gold nanoparticles for electro-oxidation and sensitive determination of nitrite. Biosens. Bioelectron., 2014, 51, 379. http://doi.org/10.1016/j.bios.2013.07.056.

S. S. Li, Y. Y. Hu, A. J. Wang, X. Weng, J. -R. Chen, J. -J. Feng. Simple synthesis of worm-like Au-Pd nanostructures supported on reduced graphene oxide for highly sensitive detection of nitrite. Sens. Actuators B-Chem., 2015, 208, 468. http://doi.org/10.1016/j.snb.2014.11.056.

X. -H. Pham, C. A. Li, K. N. Han, B. -C. Huynh-Nguyen, T. -H. Le, E. Ko, J. H. Kim, G. H. Seong. Electrochemical detection of nitrite using urchin-like palladium nanostructures on carbon nanotube thin film electrodes. Sens. Actuators B-Chem., 2014, 193, 815. https://doi.org/10.1016/j.snb.2013.12.034

A. -J. Lin, Y. Wen, L. -J. Zhang, B. Lu, Y. Li, Y. -Z. Jiao, H. -F. Yang. Layer-by-layer construction of multi-walled carbon nanotubes, zinc oxide, and gold nanoparticles integrated composite electrode for nitrite detection. Electrochim. Acta., 2011, 56, 1030. http://doi.org/10.1016/j.electacta.2010.10.058.

D. Zhang, Y. Fang, Z. Miao, M. Ma, X. Du, S. Takahashi, J. -i. Anzai, Q. Chen. Direct electrodeposion of reduced graphene oxide and dendritic copper nanoclusters on glassy carbon electrode for electrochemical detection of nitrite. Electrochim. Acta, 2013, 107, 656. http://doi.org/10.1016/j.electacta.2013.06.015.

C. Y. Lin, V. S. Vasantha, K. C. Ho. Detection of nitrite using poly(3,4-ethylenedioxythiophene) modified SPCEs. Sens. Actuators B-Chem., 2009, 140, 51. http://doi.org/10.1016/j.snb.2009.04.047.

E. Mehmeti, D. M. Stanković, A. Hajrizi, K. Kalcher. The use of graphene nanoribbons as efficient electrochemical sensing material for nitrite determination. Talanta, 2016, 159, 34. http://doi.org/10.1016/j.talanta.2016.05.079.