Chemoselective Reduction of Organic Sulphoxides, Selenoxides and Telluoxides with Magnesium in Methanolic Media and its Mechanistic Insights Organic Chemistry

Main Article Content

Prof. Kiran Arora
Prof. Jitender M. Khurana

Abstract

Mercuric chloride catalysed, a versatile, convenient and practical procedure has been developed for the reduction of chalcogenide monoxides, including sulphoxides, selenoxides and telluroxides into their respective chalcogenides. The reaction is performed using magnesium metal as the reducing agent in methanol at ambient temperature. The procedure demonstrates wide functional group tolerance and proceed under straight forward reaction conditions, making it well fitted for synthetic applications. Notably, sulphoxides required a relatively higher amount of magnesium compared to their selenium and tellurium congeners, indicating a clear difference in reactivity among the chalcogen series. The reactions proceed rapidly and proposed to be proceeding via Single Electron Transfer (SET) mechanism initiated by magnesium. This mechanism is further supported by theoretical calculations, predicted by Gaussian 09 with B3LYP/6-31G (d,p) level of theory, which indicates the role of HOMO-LUMO interactions in triggering the electron transfer. The methodology shows high chemselectivity, wide functional group tolerance under the reaction conditions and no instances of deselenization, detellurization, or desulphurization product were found, signifying the stability of chalcogenide products.

Article Details

How to Cite
(1)
Chemoselective Reduction of Organic Sulphoxides, Selenoxides and Telluoxides With Magnesium in Methanolic Media and Its Mechanistic Insights: Organic Chemistry. Innov. Chem. Mater. Sustain. 2025, 2 (2), 165-170. https://doi.org/10.63654/icms.2025.02165.
Section
Research Article

How to Cite

(1)
Chemoselective Reduction of Organic Sulphoxides, Selenoxides and Telluoxides With Magnesium in Methanolic Media and Its Mechanistic Insights: Organic Chemistry. Innov. Chem. Mater. Sustain. 2025, 2 (2), 165-170. https://doi.org/10.63654/icms.2025.02165.

References

R. G. Jones, H. Gilman. Methods of Preparation of Organometallic Compounds. Chem. Rev., 1954, 54, 835. https://doi.org/10.1021/cr60171a004

H. M. Walborsky, M. S. Aronoff, Cyclopropanes: XXXII. The mechanism of Grignard formation. J. Organometal. Chem., 1973, 51, 31. https://doi.org/10.1016/S0022-328X(00)93499-5

C. Blomberg. Magnesium: Annual survey covering the year 1972. J. Organomet. Chem., 1974, 68, 69. https://doi.org/10.1016/S0022-328X(00)89205-0

H. W. H. J. Bodewitz, C. Blomberg, F. Bickelhaupt. The formation of grignard compounds-III: The influence of the solvent. Tetrahedron, 1975, 31, 1053. https://doi.org/10.1016/0040-4020(75)80126-8

I. K. Youn, C. S. Pak. Bull. Korean Chem. Soc., 1987, 8, 434.

R. C. Larock, Comprehensive Organic Transformations, II edition, Wiley VCH.

E. J. Corey, D. S. Watt. Total synthesis of (+-)-.alpha.- and (+-)- beta-copaenes and ylangenes. J. Am. Chem. Soc., 1973, 95, 2303. https://doi.org/10.1021/ja00788a034

I. K. Youn, C. S. Pak. Reduction of Indole 2-carboxylate and 2-carboxamide with magnesium in methanol. Bull. Korean Chem. Soc., 1987, 8, 434. https://doi.org/10.5012/bkcs.1987.8.5.434

G. H. Lee, E. B. Choi, E. Lee, C. S. Pak. Reductive Cyclization of Ketones Tethered to Activated Olefins Mediated by Magnesium in Methanol. J. Org. Chem., 1994, 59, 1428. https://doi.org/10.1021/jo00085a036

S. P. Chavan, K. S. Ethiraj. Mg-MeOH mediated intramolecular reductive cyclization of activated dienes, Tetrahedron Lett., 1995, 36, 2281. https://doi.org/10.1016/0040-4039(95)00190-N

G. H. Lee, H. K Lee, E. B. Choi, B. T. Kim, C. S. Pak. An efficient Julia olefination mediated by magnesium in ethanol. Tetrahedron Lett., 1995, 36, 5607. https://doi.org/10.1016/0040-4039(95)01073-Q

H. S. Rho, B. -S. Ko. Magnesium in methanol mediated deoxygenation of the cyclic thionocarbonates of aromatic 2,3-dihydroxy esters. Synth. Commun., 2001, 31, 283. https://doi.org/10.1081/SCC-100000211

G. H. Lee, I. K. Youn, E.B. Choi, H. K. Lee, G. H. Yon, H. C. Yang, C. S. Pak. Magnesium in methanol (Mg/MeOH) in organic syntheses. Curr. Org. Chem., 2004, 8, 1263. https://doi.org/10.2174/1385272043370087

P. Dai, P. H. Dussault, T. K. Trullinger. Magnesium/methanol: An effective reducing agent for peroxides, J. Org. Chem., 2004, 69, 2851. https://doi.org/10.1021/jo035191d

K. Singh, K. Singh. Magnesium/methanol: an effective reducing agent for chemoselective reduction of pyrimidine-2(1H)-ones, Tetrahedron Lett., 2009, 50, 2219. https://doi.org/10.1016/j.tetlet.2009.02.165

M. Bidar, G. Tokmajyan, F. Nasiri. Selective reduction of unsaturated γ-and δ-lactones by magnesium-methanol. Chem. Nat. Compd. 2013, 48, 942. https://doi.org/10.1007/s10600-013-0434-2

D. Yang, L. Wang, D. Li, R. Wang. Magnesium Catalysis in Asymmetric Synthesis. Chem, 2019, 5, 1108. https://doi.org/10.1016/j.chempr.2019.02.002

J. L. Iturbe-García, D. L. Peña-Ferreyra. Alternative method for generating hydrogen through high-energy mechanical milling using magnesium and methanol. Int. J. Hyd. Energy, 2020, 45, 28383. https://doi.org/10.1016/j.ijhydene.2020.07.272.

M. Magre, M. Szewczyk, M. Rueping. Magnesium complexes in hydroelementation and reduction catalysis: Opportunities and challenges. Curr. Opin. Green Sustain. Chem., 2021, 32, 100526, https://doi.org/10.1016/j.cogsc.2021.100526

M. Madesclaire. Reduction of sulphoxides to thioethers. Tetrahedron, 1988, 44, 6537. https://doi.org/10.1016/S0040-4020(01)90096-1

J. M. Khurana, A. Ray. Chemoselective reductive coupling of nitroarenes with magnesium in methanol via single electron transfer. Bull. Chem. Soc. Jpn., 1996, 69, 407. https://doi.org/10.1246/bcsj.69.407

J. M. Khurana, A. K. Panda, A. Ray, A. Gogia. Rapid oxidation of sulfides and sulphoxides with sodium hypochlorite. Org. prep. Pro. Int., 1996, 28, 234. https://doi.org/10.1080/00304949609356529.

J. M. Khurana, A. Gogia neé Puri, R. K. Bankhwal. Chemoselective reduction of vicinal-dihalides with Mg-MeOH via SET. Synth. Commun., 1997, 27, 1801. https://doi.org/10.1080/00397919708004093

J. M. Khurana, G. Bansal, G. Kukreja, R. B. Pandey. Pinacol Formation and Reduction of Aromatic Carbonyls with Magnesium–Methanol at Ambient Temperature. Montash. Chem. 2003, 134, 1365. https://doi.org/10.1007/s00706-003-0037-x

J. M. Khurana, G. Bansal, G. Kukreja, R. B. Pandey. Pinacol Formation and Reduction of Aromatic Carbonyls with Magnesium–Methanol at Ambient Temperature. Montash. Chem. 2003, 134, 1365. https://doi.org/10.1007/s00706-003-0037-x

J. M. Khurana, B. M. Kandpal, Y. K. Chauhan. Rapid Oxidation of Selenides, Selenoxides, Tellurides, and Telluroxides with Aqueous Sodium Hypochlorite. Phosph., Sulf, Silicon Relat. Elem., 2003, 178, 1369. https://doi.org/10.1080/10426500307909

J. M. Khurana, V. Sharma, S. A. Chacko. Deoxygenation of sulphoxides, selenoxides, telluroxides, sulphones, selenones and tellurones with Mg-MeOH. Tetrahedron, 2007, 63, 966. https://doi.org/10.1016/j.tet.2006.11.027

K. Arora, J. M. Khurana. Reduction of organic Sulphones, selenones and tellurones using magnesium and methanol as reductant. Phosph. Sulf., and Silicon and Related Elem., 2025, 200, 174. https://doi.org/10.1080/10426507.2025.2463459

A. I. Vogel, Textbook of Practical Organic Chemistry, 5th Ed., ELBS: Oxford, p. 168-169 (1987).

N. J. Leonard, C. R. Johnson. Periodate oxidation of sulfides to sulphoxides. Scope of the reaction. J. Org. Chem., 1962, 27, 282. https://doi.org/10.1021/jo01048a504

Handbuch Der Chemie, Beilstein, 6, 869.

M. L. Bird, F. Challenger. Potassium alkaneselenonates and other alkyl derivatives of selenium. J. Chem. Soc., (Resumed), 1942, 570. https://doi.org/10.1039/JR9420000570

H. Rheinboldt, E. Giesbrecht. The configuration of organic telluroxides. Mixed crystals of telluroxides with selenoxides. J. Am. Chem. Soc., 1947, 69, 2310. https://doi.org/10.1021/ja01202a019

E. S. Gould, J. D. McCullough. Some Complexes Formed from Diaryl Selenoxides and Mercury (II) Halides. J. Am. Chem. Soc., 1951, 73, 3196. https://doi.org/10.1021/ja01151a059

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox. Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2013.

GaussView, Version 6, Dennington, Roy; Keith, Todd A.; Millam, John M. Semichem Inc., Shawnee Mission, KS, 2016.