Recent Developments in Metal Chalcogenide Quantum Dots: From Material Design Strategies to Applications Materials Science
Main Article Content
Abstract
Nanotechnology advancements in recent times have led to the development of various metal chalcogenide quantum dots (QDs), including binary QDs (metal sulfide, selenide, and telluride) and alloyed QDs (cadmium selenium telluride). These QDs are valued for their distinctive optoelectronic and functional properties, including intrinsic (quantum confinement) and extrinsic (high surface area) effects influenced by size, shape, and surface characteristics. This review article mainly focuses on the most recent advancements in the synthesis, properties, and applications of metal chalcogenide QDs. We cover different synthesis approaches, including solvothermal, wet chemical, aqueous, photochemical, mechanochemical, and green synthesis, and explain how these techniques impact their properties. We then examine the diverse applications of QDs, including LEDs, biomedical, photovoltaics, neuromorphic, photodetector, photocatalysis, and sensing. Lastly, we explore the challenges and future opportunities for metal chalcogenide quantum dots. This article will provide a deeper understanding of the metal chalcogenide QDs. Moreover, it is beneficial for the researchers to make efficient QDs with various applications.
Article Details
How to Cite
References
J. Mal, Y. V. Nancharaiaha, E. D. van Hullebusch, P. N. L. Lens. Metal Chalcogenide quantum dots: biotechnological synthesis and applications. RSC Adv. 2016, 6, 41477. https://doi.org/10.1039/c6ra08447h
L. Manna. The Bright and Enlightening Science of Quantum Dots. Nano Lett. 2023, 23, 9673. https://doi.org/10.1021/acs.nanolett.3c03904
C. B. Murray, D. J. Norris, M. G. Bawendi. Synthesis and characterization of nearly monodisperse CdE (E= S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115,8706. https://doi.org/10.1021/ja00072a025
M. Gusain, R. Nagpal, Y. Zhan. Analysis and characterization of quantum dots. Graphene, Nanotubes and Quantum Dots-Based Nanotechnology, 2022 ch 29, pp 709-726. https://doi.org/10.1016/B978-0-323-85457-3.00027-X
K. T. Yong; W. C. Law, I. Roy, Z. Jing, H. Huang, M. T. Swihart, P. N. Prasad. Aqueous phase synthesis of CdTe quantum dots for biophotonics. J. Biophotonics 2011, 4, 9. https://doi.org/10.1002/jbio.201000080
R. K. Kesrevani, A. K. Sharma. Nanoarchitectured Biomaterials: Present Status and Future Prospects in Drug Delivery. Nanoarchitectonics for Smart Delivery and Drug Targeting 2016, ch 2, pp 35-66. https://doi.org/10.1016/B978-0-323-47347-7.00002-1
N. Thejo Kalyani, S. J. Dhoble. Introduction to nano materials. Editor(s): N. Thejo Kalyani, Sanjay J. Dhoble, Marta Michalska-Domańska, B. Vengadaesvaran, H. Nagabhushana, Abdul Kariem Arof, In Woodhead Publishing Series in Electronic and Optical Materials, Quantum Dots, Woodhead Publishing 2023, pp 3-40. DOI: https://doi.org/10.1016/B978-0-323-85278-4.00010-6
A. Singh, A. Guleria, S. Neogy, M. C. Rath. UV induced synthesis of starch capped CdSe quantum dots: Functionalization with thiourea and application in sensing heavy metals ions in aqueous solution. Arab. J. Chem. 2020, 13, 3149. https://doi.org/10.1016/j.arabjc.2018.09.006
T. Arfin, V. K. Alam, P. G. Moradeeya. Metal oxide photonic crystals and their application (designing, properties, and applications), (Ed.), S. Sagadevan, J. Podder, F. Mohammad, In Metal Oxides, Metal Oxides for Optoelectronics and Optics-Based Medical Applications, Elsevier, 2022, pp. 191-204, https://doi.org/10.1016/B978-0-323-85824-3.00010-5
M. Bouroushian. Chalcogens and Metal Chalcogenides. Electrochemistry of Metal Chalcogenides, 2010, ch 1, pp- 1-56. https://doi.org/10.1007/978-3-642-03967-6
O. I. Micic, A. J. Nozik. Synthesis and characterization of binary and ternary III-V quantum dots. J. Lumi. 1996, 70, 95. https://doi.org/10.1016/0022-2313(96)00047-6
N. Chand, S. C. Thakur, P. B. Katyal, V. Barman, P. Sharma. Recent developments on the synthesis, structural and optical properties of chalcogenide quantum dots. Sol. Energ. Mat. Sol. C. 2017, 168, 183. http://dx.doi.org/10.1016/j.solmat.2017.04.033
L. Jing, S. V. Kershaw, Y. Li, X. Huang, Y. Li, Andrey L. Rogach, M. Gao. Aqueous Based Semiconductor Nanocrystals. Chem. Rev. 2016, 116, 10623. https://doi.org/10.1021/acs.chemrev.6b00041
A. Kiczor, P. Mergo. Synthesis of CdSe Quantum Dots in Two Solvents of Different Boiling Points for Polymer Optical Fiber Technology. Materials 2024, 17, 227. https://doi.org/10.3390/ma17010227
T. Arfin. Emerging trends in lab-on-achip for biosensing applications, In: C. M. Hussain, S. K. Shukla, G.M. Joshi (Eds.), Functionalized nanomaterials based devices for environmental applications: a volume in micro and nano technologies, Elsevier, Netherland, 2021, pp. 199-218. https://doi.org/10.1016/B978-0-12-822245-4.00008-8
H. Huang, W. Feng, Y. Chen, J. Shi. Inorganic nanoparticles in clinical trials and translations. Nanotoday 2020, 35, 1. https://doi.org/10.1016/j.nantod.2020.100972
O. A. Aladesuyi, O. S. Oluwafemi. Synthesis strategies and application of ternary quantum dots - in cancer therapy. Nano-Struct. Nano-Obj. 2020, 24, 100568. https://doi.org/10.1016/j.nanoso.2020.100568
F. Mohammad, T. Arfin, H. A. Al-Lohedan. Development of graphene-based nanocomposites as potential materials for supercapacitors and electrochemicals cells, In: M. Jawaid, A. Ahmad, D. Lokhat (Eds.), Graphene-based nanotechnologies for energy and environmental applications: Micro and nano technologies, 1st Edition, Elsevier, Netherland, 2019, 145-154. https://doi.org/10.1016/B978-0-12-815811-1.00008-9
D. Bera, L. Qian, T. K. Tseng, P. H. Holloway. Quantum Dots and Their Multimodal Applications: A Review. Materials (Basel) 2010, 3, 2260. https://doi.org/10.3390/ma3042260
K. Surana, P. Singh, H. Rhee, B. Bhattacharya. Synthesis, characterization and application of CdSe quantum dots. J. Ind. Eng. Chem. 2014, 20, 4188. https://doi.org/10.1016/j.jiec.2014.01.019
A. Singh, A. Kunwar, M. C. Rath. L-Cysteine Capped CdSe Quantum Dots Synthesized by Photochemical Route. J. Nanosci. Nanotechnol. 2017, 17, 1. DOI:http://dx.doi.org/10.1166/jnn.2018.14687
M. Saad, S. Nadi, F. Ibraheem, Y. A. Badr, I. A. Mahdy, Z. M. A. El-Fattah, A. Sayed. Bright photoluminescence from CdSe quantum dots conjugated with metal phthalocyanines. Optical Mater. 2024, 147, 114736. https://doi.org/10.1016/j.optmat.2023.114736
J. Drbohlavova, V. Adam, R. Kizek, J. Hubalek. Quantum Dots-Characterization, Preparation and Usage in Biological Systems. Int. J. Mol. Sci. 2009, 10, 656. https://doi.org/10.3390/ijms10020656
K. Agarwal, H. Rai, S. Mondal. Quantum dots: an overview of synthesis, properties, and applications. Mater. Res. Express 2013, 10, 062001. https://doi.org/10.1088/2053-1591/acda17
T. Arfin, P. Ranjan, S. Bansod, R. Singh, S. Ahmead, K. Neeti. Organic electrodes: An Introduction, In: R.K. Gupta (Ed.), Organic electrodes: Fundamental to advanced emerging applications, Springer, Switzerland, 2022, pp. 1-26. https://doi.org/10.1007/978-3-030-98021-4_1
B. Gao, C. Shen, S. Yuan, Y. Yang, G. Chen. Synthesis of Highly Emissive CdSe Quantum Dots by Aqueous Precipitation Method. J. Nanomater. 2013, 19, 1. http://dx.doi.org/10.1155/2013/138526
R. Lia, L. Tang, Q. Zhao, K. S. Teng, S. P. Laue. Facile synthesis of ZnS quantum dots at room temperature for ultra-violet Photodetector applications. J. Chem. Let. 2017, 742, 137127. https://doi.org/10.1016/j.cplett.2020.137127
S. Bansod, T. Arfin, R. Singh, S. Ahmad, K. Neeti. Chemically modified carbon nanotubes for lab on chip devices, In: J. Aslam, CM. Hussain, R. Aslam (Eds.), Chemically modified carbon nanotubes for commercial applications, Wiley-VCH GmbH, Germany, 2023, pp. 271-298. https://doi.org/10.1002/9783527838790.ch12
A. Valizadeh, H. Mikaeili, M. Samiei, S. Farkhani, N. Zarghami, M. kouhi, A. Akbarzadeh, S. Davaran. Quantum dots: synthesis, bioapplications, and toxicity. Nanoscale Res. Lett. 2012, 7, 480. https://doi.org/10.1186/1556-276X-7-480
K. J. Nordell, E. M. Boatman G. C. Lisensky. A Safer, Easier, Faster Synthesis for CdSe Quantum Dot Nanocrystals. J. Chem. Educ. 2005, 82, 1697. https://doi.org/10.1021/ed082p1697
A. Aboulaich, D. Billaud, M. Abyan, L. Balan, J. J Gaumet, Ghouti Medjadhi, J. Ghanbaja, R. Schneider. One-Pot Noninjection Route to CdS Quantum Dots via Hydrothermal Synthesis. ACS Appl. Mater. Interfaces 2012, 4, 2561. https://doi.org/10.1021/am300232z
A. K. Bansal, F. Antolini, S. Zhang, L. Stroea, L. Ortolani, M. Lanzi, E. Serra, S. Allard, U. Scherf, I. D. W. Samuel. Highly Luminescent Colloidal CdS Quantum Dots with Efficient Near-Infrared Electroluminescence in Light-Emitting Diodes. J. Phys. Chem. C 2016, 120, 1871. https://doi.org/10.1021/acs.jpcc.5b09109
K. E. Andersen, C. Y. Fong, W. E. Pickett. Quantum confinement in CdSe nanocrystallites. J. Non-Cryst. Solids 2002, 299, 1105. https://doi.org/10.1016/S0022-3093(01)01132-2
L. Meng, Q. Chen, X. Li, H. Zhang, Y Hai, Y. Yang, X. Wang, M. Luo. Enhanced Photocatalytic Nitrogen Reduction via Bismuth Nanoparticle-Decorating ZnCdS Solid Solution. Inorg. Chem. 2024, 63, 5065. https://doi.org/10.1021/acs.inorgchem.3c04566
W. A. A. Mohamed, H. A. E.-Gawad, S. Mekkey, H. Galal, H. Handal, H. Mousa, A. Labib. Quantum dots synthetization and future prospect applications. Nanotechnol. Rev. 2021, 10, 1926. https://doi.org/10.1515/ntrev-2021-0118
H. T. Tung, D. V. Thuan, J. H. Kiat, D. H. Phuc. Ag+ ion doped on the CdSe quantum dots for quantum dot sensitized solar cells’ application. Appl. Phys. A 2019, 125, 505. https://doi.org/10.1007/s00339-019-2797-0
S. T. Harry, M. A. Adekanmbi. Confinement energy of Quantum dots and the Brus equation, Int. J. Res. 2020, 8, 318. https://doi.org/10.29121/granthaalayah.v8.i11.2020.2451
R. Köhler, W. Neumann, M. Schmidbauer, M. Hanke, D. Grigoriev, P. Schäfer, H. Kirmse, I. Häusler, R. Schneider. Structural Characterisation of Quantum Dots by X-Ray Diffraction and TEM, Semicond. Nanostructures 2008, p. 97. https://doi.org/10.1007/978-3-540-77899-8_5
H. Li, H. J. Xiao, T. S. Zhu, H. C. Xuan, M. Li. Size Consideration on Shape Factor and Its Determination Role on the Thermodynamic Stability of Quantum Dots. J. Phys. Chem. C 2015, 119, 12002. https://doi.org/10.1021/acs.jpcc.5b02230
W. H. Qi, M. P. Wang, M. Zhou, X. Q. Shen, X. F. Zhang. Modeling cohesive energy and melting temperature of nanocrystals. J. Phys. Chem. Solids, 2006, 67, 851. http://dx.doi.org/10.1016/j.jpcs.2005.12.003
Y. Li, Y. Ding, Y. Zhang, Y. Qian. Photophysical properties of ZnS quantum dots. J. Phys. Chem. Solids 1999, 60, 13. https://doi.org/10.1016/S0022-3697(98)00247-9
M. A. Hegazy, A. M. Hameed. Characterization of CdSe-nanocrystals used in semiconductors for aerospace applications: Production and optical properties. NRIAG J. Astron. Geophys 2014, 3, 82. https://doi.org/10.1016/j.nrjag.2014.05.002
F. S. Riehle, K. Yu. Role of Alcohol in the Synthesis of CdS Quantum Dots. Chem. Mater. 2020, 32, 1780. https://doi.org/10.1021/acs.chemmater.9b04009
S. Bandaru, M. Palanivel, M. Ravipat, W. Y. Wu, S. Zahid, S. S. Halkarni, G. K. Dalapati, K. K. Ghosh, B. Gulyás, P. Padmanabhan, S. Chakrabortty. Highly Monodisperse, Size Tunable Glucosamine Conjugated CdSe Quantum Dots for Enhanced Cellular Uptake and Bioimaging. ACS Omega 2024, 9, 7452. https://doi.org/10.1021/acsomega.3c04962
W. K. Bae, K. Char, H. Hur, S. Lee. Single-Step Synthesis of Quantum Dots with Chemical Composition Gradients. Chem. Mater. 2008, 20, 531. https://doi.org/10.1021/cm070754d
A. R. C. Osypiw, S. Lee, S. M. Jung, S. Leoni, P. M. Smowton, B. Hou, J. M. Kim, G. A. J. Amaratunga. Solution-processed colloidal quantum dots for light emission, Mater. Adv. 2022, 3, 6773. https://doi.org/10.1039/D2MA00375A
B. A. A. Jahdaly, M. F. Elsadek, B.M. Ahmed, M.F. Farahat, M.M. Taher, A.M. Khalil. Outstanding Graphene Quantum Dots from Carbon Source for Biomedical and Corrosion Inhibition Applications: A Review. Sustainability 2021, 13, 2127. https://doi.org/10.3390/su13042127
S. Das, K. Sa, P. C Mahakul, J. Raiguru, I. Alam, B. V. R. S. Subramanyam, P. Mahanandia. Synthesis of quaternary chalcogenide CZTS nanoparticles by a hydrothermal route. IOP Conf. Ser.: Mater. Sci. Eng. 2018, 338, 012062. https://doi.org/10.1088/1757-899X/338/1/012062
G. B. Passos, D. V. Freitas, J. M. M. Dias, E. T. Neto, M. Navarro. One-pot electrochemical synthesis of CdTe quantum dots in cavity cell. ElectrochimicaActa 2016, 190, 689. https://doi.org/10.1016/j.electacta.2016.01.016
I. A. Mir, K. Das, K. Rawat, H. B. Bohidar. Hot Injection versus Room Temperature Synthesis of CdSe Quantum Dots: A Differential Spectroscopic and Bioanalyte Sensing Efficacy Evaluation. Colloids Surf. A: Physicochem. Eng. Aspects. 2016, 494, 162. https://doi.org/10.1016/j.colsurfa.2016.01.002
D. Mohanta, S. S. Narayanan, S. K. Pal, A. K. Raychaudhuri. Time-resolved photoluminescence decay characteristics of bovine serum albumin-conjugated semiconductor nanocrystallites. J. Exp. Nanosci. 2009, 4, 177. https://doi.org/10.1080/17458080902866204
A. Yakoubi, T. B. Chaabane, A. Aboulaich, R. Mahiou, L. Balan, G. Medjahdi, R. Schneider. Aqueous synthesis of Cu-doped CdZnS quantum dots with controlled and efficient photoluminescence. J. Lumin. 2016, 175, 193. https://doi.org/10.1016/j.jlumin.2016.02.035.
H. Zhan, P. Zhou, K. Pan, T. He, X. He, C. Zhou, Y. He, One-pot aqueous-phase synthesis of ultra-small CdSe/CdS/ CdZnS core–shell–shell quantum dots with high-luminescent efficiency and good stability. J. Nanopart. Res. 2013, 15, 1680. https://doi.org/10.1007/s11051-013-1680-8
K. Vidhya, M. Saravanan, G. Bhoopathi, V. P. Devarajan, S. Subanya. Structural and optical characterization of pure and starch-capped ZnO quantum dots and their photocatalytic activity. Appl. Nanosci. 2015, 5,235. https://doi.org/10.1007/s13204-014-0312-7
J. M. Baruah, S. Kalita, J. Narayan. Green chemistry synthesis of biocompatible ZnS quantum dots (QDs): their application as potential thin films and antibacterial agent. Int. Nano Lett. 2019, 9, 149. https://doi.org/10.1007/s40089-019-0270-x
Q. Zhang, Li, Y. Ma, T. Zhai. ZnSe nanostructures: Synthesis, properties and applications. Prog. Mater. Sci., 2016, 83, 472. http://doi.org/10.1016/j.pmatsci.2016.07.005
S. Jagtapa, P. Chopadea, S. Tadepalli, A. Bhaleraoc, S. Gosavi. A review on the progress of ZnSe as inorganic scintillator. Opto-Electronics Rev. 2019, 27, 90. https://doi.org/10.1016/j.opelre.2019.01.001
U. B. Memon, U. Chatterjee, M. N. Gandhi, S. Tiwari, S. P. Duttagupta. Synthesis of ZnSe Quantum Dots with Stoichiometric Ratio Difference and Study of its Optoelectronic Property. Procedia Mater. Sci. 2014, 4, 1027. https://doi.org/10.1016/j.mspro.2014.07.393
P. A. Radi, A. G. Brito-Madurro, J. M. Madurro, N. O. Dantas. Characterization and properties of CdO nanocrystals incorporated in polyacrylamide. Braz. J. Phys. 2006, 36, 412. https://doi.org/10.1590/S0103-97332006000300048
H. Li, H. J. Xiao, T. S. Zhu, H. C. Xuan, M. Li. Size Consideration on Shape Factor and Its Determination Role on the Thermodynamic Stability of Quantum Dots. J. Phys. Chem. C 2015, 119, 12002. https://doi.org/10.1021/acs.jpcc.5b02230
M. Masab, H. Muhammad, F. Shah, M. Yasira, M. Hanif. Facile synthesis of CdZnS QDs: Effects of different capping agents on the photoluminescence properties. Mater. Sci. Semicond. Process. 2018, 81, 113. https://doi.org/10.1016/j.mssp.2018.03.023
M. A. Husseina, K. A. Mohammedb, R. A. Talib. Energy band gaps and optical absorption properties of the CdZnS and CdZnS:PEO thin films prepared by chemical bath deposition. Chalcogenide Lett. 2022, 19, 239. https://doi.org/10.15251/CL.2022.195.329
Q. Zhang, C. Nie, C. Chang, C. Guo, X. Jin, Y. Qin, F. Li, Q. Li. Highly luminescent red emitting CdZnSe/ZnSe quantum dots synthesis and application for quantum dot light emitting diodes, Opt. Mater. Express. 2017, 7, 3875. https://doi.org/10.1364/OME.7.003875
W. Yue, S. Han, R. Peng, W. Shen, H. Geng, F. Wu, S. Tao, M. Wang. CuInS2 quantum dots synthesized by a solvothermal route and their application as effective electron acceptors for hybrid solar cells. J. Mater. Chem. 2010, 20, 7570. https://doi.org/10.1039/C0JM00611D
T. Arfin, S. Athar. Graphene for advanced organic photovoltaics, In: S. Kanchi, S. Ahmed, M.I. Sabela, C.M. Hussain (Eds.), Nanomaterials: biomedical, environmental, and engineering applications, Scrivener Publishing LLC, Beverly, 2018, pp. 93-103. https://doi.org/10.1002/9781119370383.ch3
G. Chen, J. Seo, C. Yang, P. N. Prasad. Nanochemistry and nanomaterials for photovoltaics. Chem. Soc. Rev. 2013, 42, 8304. https://doi.org/10.1039/C3CS60054H
J. H. Rhee, C. C. Chung, E. W. G. Diau. A perspective of mesoscopic solar cells based on metal chalcogenide quantum dots and organometal-halide perovskites. NPG Asia Mater. 2013, 5, 68. https://doi.org/10.1038/am.2013.53
S. C. Zhu, F. -X. Xiao. Transition metal chalcogenides quantum dots: emerging building blocks toward solar-to-hydrogen conversion. ACS Catal. 2023, 13, 7269. https://doi.org/10.1021/acscatal.2c05401
A. Qurashi. Metal Chalcogenide Nanostructures for Renewable Energy Applications, Wiley, 2014, 233-246. https://doi.org/10.1002/9781119008934.ch10
S. Singh, Z. H. Khan, P. Kumar, M. B. Khan, P. Kumar. Quantum dots-sensitized solar cells: a review on strategic developments. Bull. Mater. Sci. 2022, 45, 81. https://doi.org/10.1007/s12034-022-02662-z
J. Zhu, K. Lu, J. Li, Z. Liu, W. Ma. Tandem solar cells based on quantum dots. Mater. Chem. Front. 2024, 8, 1792. https://doi.org/10.1039/D3QM01087B
S. R. Padmaperuma, M. Liu, R. Nakamura, Y. Tachibana. Photoinduced charge carrier dynamics of metal chalcogenide semiconductor quantum dot sensitized TiO2 film for photovoltaic application. J. Photopolym. Sci. Technol. 2021, 34, 271. https://doi.org/10.2494/PHOTOPOLYMER.34.271
M. A. Mumin, K. F. Akhter, O. O. Oyeneye, W. Z. Xu, P. A. Charpentier. Supercritical Fluid Assisted Dispersion of NanoSilica encapsulated CdS/ZnS quantum dots in poly(ethylene-co-vinyl Acetate) for solar harvesting films. ACS Appl. Nano Mater. 2018, 1, 3186. https://doi.org/10.1021/acsanm.8b00390
P. Cui, P. K. Tamukong, S. Kilina. Effect of Binding Geometry on Charge Transfer in CdSe Nanocrystals Functionalized by N719 Dyes to Tune Energy Conversion Efficiency. ACS Appl. Nano Mater. 2018, 1, 3174. https://doi.org/10.1021/acsanm.8b00350
M. A. Hossain, J. R. Jennings, C. Shen, J. H. Pan, Z. Y. Koh, N. Mathews, Q. Wang. CdSe sensitized mesoscopic TiO2 solar cells exhibiting >5% efficiency: redundancy of CdS buffer layer. J. Mater. Chem. 2012, 22, 16235. https://doi.org/10.1039/C2JM33211F
N. Guijarro, E. Guillén, T. Lana-Villarreal, R. Gómez. Quantum dot-sensitized solar cells based on directly adsorbed zinc copper indium sulfide colloids. Phys. Chem. Chem. Phys. 2014, 16, 9115. https://doi.org/10.1039/C4CP00294F
K. Zhao, Z. Pan, I. Mora-Sero, E. Canovas, H. Wang, Y. Song, X. Gong, J. Wang, M. Bonn, J. Bisquert, X. Zhong. Boosting power conversion efficiencies of quantum-dot-sensitized solar cells beyond 8% by recombination control. J. Am. Chem. Soc. 2015, 137, 5602. https://doi.org/10.1021/jacs.5b01946
J. Yang and X. Zhong. CdTe based quantum dot sensitized solar cells with efficiency exceeding 7% fabricated from quantum dots prepared in aqueous media. J. Mater. Chem. A 2016, 4, 16553. https://doi.org/10.1039/C6TA07399A
A. Arivarasan, S. Bharathi, V. Vijayaraj, G. Sasikala, R. Jayavel. Evaluation of reaction parameters dependent optical properties and its photovoltaics performance of CdTe QDs. J. Inorg. Organomet. Polym. Mater. 2018, 28, 1263. https://doi.org/10.1007/s10904-018-0803-1
G. Shen, Z. Du, Z. Pan, J. Du, X. Zhong. Solar paint from TiO2 particles supported quantum dots for photoanodes in quantum dot-sensitized solar cells. ACS Omega 2018, 3, 1102. https://doi.org/10.1021/acsomega.7b01761
H. Zhang, W. Fang, W. Wang, N. Qian, X. Ji. Highly efficient Zn-Cu-In-Se quantum dot-sensitized solar cells through surface capping with ascorbic acid. ACS Appl. Mater. Interfaces 2019, 11, 6927. https://doi.org/10.1021/acsami.8b18033
B. Fu, C. Deng, L. Yang. Efficiency enhancement of solid-state CuInS2 quantum dot-sensitized solar cells by improving the charge recombination. Nanoscale Res. Lett. 2019, 14, 198. https://doi.org/10.1186/s11671-019-2998-7
P. Xu, X. Chang, R. Liu, L. Wang, X. Li, X. Zhang, X. Yang, D. Wang, W. Lu. Boosting power conversion efficiency of quantum dot-sensitized solar cells by integrating concentrating photovoltaic concept with double photoanodes. Nanoscale Res. Lett. 2020, 15, 188. https://doi.org/10.1186/s11671-020-03424-8
Y. Lin, H. Song, J. Zhang, H. Rao, Z. Pan, X. Zhong. Hole transport materials mediating hole transfer for high efficiency quantum dot sensitized solar cells. J. Mater. Chem. A 2021, 9, 997. https://doi.org/10.1039/D0TA10702F
H. Song, Y. Lin, M. Zhou, H. Rao, Z. Pan, X. Zhong. Zn–Cu– In–S–Se quinary “green” alloyed quantum-dot-sensitized solar cells with a certified effciency of 14.4%. Angew. Chem. Int. Ed. 2020, 60, 6137. https://doi.org/10.1002/anie.202014723
E. Elibol. Quantum dot sensitized solar cell design with surface passivized CdSeTe QDs. Sol. Energy 2020, 206, 741. https://doi.org/10.1016/j.solener.2020.06.002
G. Konstantatos, E. H. Sargent. Nanostructured materials for photon detection. Nat. Nanotechnol. 2010, 5, 391. https://doi.org/10.1038/nnano.2010.78
H. Tang, J. Zhong, W. Chen, K. Shi, G. Mei, Y. Zhang, Z. Wen, P. Müller-Buschbaum, D. Wu, K. Wang, X. W. Sun. Lead Sulfide Quantum Dot Photodetector with Enhanced Responsivity through a Two-Step Ligand-Exchange Method. ACS Appl. Nano Mater. 2019, 2, 6135. https://doi.org/10.1021/acsanm.9b00889
B. Cook, M. Gong, D. Ewing, M. Casper, A. Stramel, A. Elliot, J. Wu. Inkjet Printing Multicolor Pixelated QDs on Graphene for Broadband Photodetection. ACS Appl. Nano Mater. 2019, 2, 3246. https://doi.org/10.1021/acsanm.9b00539
N. Mahmoud, W. Walravens, J. Kuhs, C. Detavernier, Z. Hens, G. Roelkens. Micro-Transfer-Printing of Al2O3-Capped Short Wave-Infrared PbS Quantum Dot Photoconductors. ACS Appl. Nano Mater. 2019, 2. 299. https://doi.org/10.1021/acsanm.8b01915
B. Hafiz, M. R. Scimeca, P. Zhao, I. J. Paredes, A. Sahu, D. K. Ko. Silver Selenide Colloidal QDs for Mid Wavelength Infrared Photodetection. ACS Appl. Nano Mater. 2019, 2, 1631. https://doi.org/10.1021/acsanm.9b00069
A. Paliwal, S. V. Singh, A. Sharma, A. Sugathan, S. W. Liu, S. Biring, B. N. Pal. Microwave-Polyol Synthesis of Sub-10-nm PbS Nanocrystals for Metal Oxide/Nanocrystal Heterojunction Photodetectors. ACS Appl. Nano Mater. 2018, 1, 6063. https://doi.org/10.1021/acsanm.8b01194
E. Lhuillier, P. Guyot-Sionnest. Recent Progresses in Mid Infrared Nanocrystal Optoelectronics. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 6000208. https://doi.org/10.1109/JSTQE.2017.2690838
X. Lyu. Recent Progress on Infrared Detectors: Materials and Applications. HSET 2022, 27, 191. https://doi.org/10.54097/hset.v27i.3747
J. Chen, J. Chen, X. Li, J. He, L. Yang, J. Wang, F. Yu, Z. Zhao, C. Shen, H. Guo, L. Guanhai, X. Chen, W. Lu. High-performance HgCdTe avalanche photodetector enabled with suppression of band-to-band tunneling effect in mid-wavelength infrared. NPJ Quantum Mater. 2021, 6, 2397. https://doi.org/10.1038/s41535-021-00409-3
L. Ciura, M. Kopytko, P. Martyniuk. Low-frequency noise limitations of InAsSb-, and HgCdTe-based infrared detectors. Sens. Actuators A Phys. 2020, 305, 111908. https://doi.org/10.1016/j.sna.2020.111908
K. Batty, I. Steele, C. Copperwheat. Laboratory and On-sky Testing of an InGaAs Detector for Infrared Imaging. Publ. Astron. Soc. Pac. 2022, 134, 65001. https://doi.org/10.1088/1538-3873/ac71cc.
X. Zhao, H. Ma, H. Cai, Z. Wei, Y. Bi, X. Tang, T. Qin. Lead chalcogenide colloidal QDs for infrared photodetectors. Materials 2023, 16, 5790. https://doi.org/10.3390/ma16175790.
Q. Hao, H. Ma, X. Xing, X. Tang, Z. Wei, X. Zhao, M. Chen. Mercury Chalcogenide colloidal quantum dots for infrared photodetectors. Material 2023, 16, 7321. https://doi.org/10.3390/ma16237321
Y. Tian, H. Luo, M. Chen, C. Li, S. V. Kershaw, R. Zhang, A. L. Rogach. Mercury chalcogenide colloidal QDsfor infrared photodetection: from synthesis to device applications. Nanoscale 2023, 15, 6476. https://doi.org/10.1039/D2NR07309A
P. Zhao, T. Qin, G. Mu, S. Zhang, Y. Luo, M. Chen, X. Tang. Band-engineered dual-band visible and short infrared photodetector with metal chalcogenide colloidal quantum dots. J. Mater. Chem. C 2023, 11, 2842. https://doi.org/10.1039/D3TC00066D
A. Maimulyanti, A. R. Prihadi, B. Mellisani, I.
Nurhidayati, F. A. Rachmawati Putri, F. Puspita, R. W. Widarsih. Green Extraction Technique to Separate Tannin from Coffee Husk Waste Using Natural Deep Eutectic Solvent (NADES). Rasayan J. Chem. 2023, 16, 2239. http://dx.doi.org/10.31788/RJC.2023.1638334
R. Bushra, T. Arfin, M. Oves, W. Raza, F. Mohammad, M. A. Khan, A. Ahmed, A. Azam, M. Muneer. Development of PANI/MWCNTs decorated with cobalt oxide nanoparticles toward multiple electrochemical, photocatalytic and biomedical application sites. New J. Chem. 2016, 40, 9448. https://doi.org/10.1039/C6NJ02054B
Y. -H. Liu, C. -L. Yang, M. -S. Wang, X. -G. Ma, Y. -G. Yi. Ternary chalcogenides XGsS2 (X = Ag or Cu) for photocatalytic hydrogen generation from water splitting under irradiation of visible light. Int. J. Quantum Chem. 2020, 120, 26166. https://doi.org/10.1002/qua.26166
C. Kumari, P. Sharma, S. Chhoker. Photocatalytic activity of quaternary chalcogenide for methylene blue degradation. AIP Conf. Proc. 2024, 2995, 020066. https://doi.org/10.1063/5.0177995
J. A. Caputo, L. C. Frenette, N. Zhao, K. L. Sowers, T. D. Krauss, D. J. Weix. General and Efficient C-C Bond Forming Photoredox Catalysis with Semiconductor Quantum Dots. J. Am. Chem. Soc. 2017, 139, 4250. https://doi.org/10.1021/jacs.6b13379
Z. Zhang, K. Edme, S. Lian, E. A. Weiss. Enhancing the Rate of Quantum-Dot-Photocatalyzed Carbon-Carbon Coupling by Tuning the Composition of the Dot's Ligand Shell. J. Am. Chem. Soc. 2017, 139, 4246. https://doi.org/10.1021/jacs.6b13220
Y. Zhou, S. Yang, D. Fan, J. Reilly, H. Zhang, W. Yao, J. Huang. Carbon Quantum Dot/TiO2 Nanohybrids: Efficient Photocatalysts for Hydrogen Generation via Intimate Contact and Efficient Charge Separation. ACS Appl. Nano Mater. 2019, 2, 1027. https://doi.org/10,1021/acsanm.8b02310
A. Samanta, J. C. Breger, K. Susumu, E. Oh, S. A. Walper, N. Bassim, I. L. Medintz. DNA-Nanoparticle Composites Synergistically Enhance Organophosphate Hydrolase Enzymatic Activity. ACS Appl. Nano Mater. 2018, 1, 3091. https://pubs.acs.org/doi/abs/10.1021/acsanm.8b00933
E. G. Durmusoglu, Y. Turker, H. Y. Acar. Luminescent PbS and PbS/CdS QDs with Hybrid Coatings as Nanotags for Authentication of Petroleum Products. ACS Appl. Nano Mater. 2019, 2, 7737. https://doi.org/10.1021/acsanm.9b01780
F. M. de Melo, D. Grasseschi, B. B. N. S. Brandao, Y. Fu, H. E. Toma. Superparamagnetic Maghemite-Based CdTe quantum dots as Efficient Hybrid Nanoprobes for Water-Bath Magnetic Particle Inspection. ACS Appl. Nano Mater. 2018, 1, 2858. https://doi.org/10.1021/acsanm.8b00502
L. Meng, Q. Chen, X. Li, H. Zhang, Y. Hai, Y. Hai, Y. Yang, X. Wang, and M. Luo. Enhanced photocatalytic nitrogen reduction via bismuth nanoparticle-decorating ZnCdS solid solution. Inorg. Chem. 2024, 63, 5065. https://doi.org/10.1021/acs.inorgchem.3c04566
L. Sun, J. J. Choi, D. Stachnik, A. C. Bartnik, B. R. Hyun, G. G. Malliaras, T. Hanrath, F. W. Wise. Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control. Nature Nanotech. 2012, 7, 369. https://doi.org/10.1038/nnano.2012.63
X. Yang, F. Ren, Y. Wang, T. Ding, H. Sun, D. Ma, X. W. Sun. Iodide capped PbS/CdS core-shell QDs for efficient long-wavelength near-infrared light-emitting diodes. Sci. Rep. 2017, 7, 14741. https://doi.org/10.1038/s41598-017-15244-5.
X. Gong, Z. Yang, G. Walters, R. Comin, Z. Ning, E. Beauregard, V. Adinolfi, O. Voznyy, E. H. Sargent. Highly efficient quantum dot near-infrared light-emitting diodes. Nat. Photonics 2016, 10, 253. https://doi.org/10.1038/nphoton.2016.11
S. Pradhan, F. D. Stasio, Y. Bi, S. Gupta, S. Christodoulou, A. Stavrinadis, G. Konstantatos. High-efficiency colloidal quantum dot infrared light-emitting diodes via engineering at the supra-nanocrystalline level. Nat. Nanotech. 2019, 14, 72. https://doi.org/10.1038/s41565-018-0312-y
G. J. Supran, K. W. Song, G. W. Hwang, R. E. Correa, J. Scherer, E. A. Dauler, Y. Shirasaki, M. G. Bawendi, V. Bulović. High-performance shortwave-infrared light-emitting devices using core-shell (PbS-CdS) colloidal quantum dots. Adv. Mater. 2015, 27, 1437. https://doi.org/10.1002/adma.201404636
X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, X. Peng. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 2014, 515, 96. https://doi.org/10.1038/nature13829
H. -M. Kim, D. Geng, J. Kim, E. Hwang, J. Jang. Metal-Oxide stacked electron transport layer for highly efficient inverted quantum-dot light emitting diodes. ACS Appl. Mater. 2016, 8, 28727. https://doi.org/10.1021/acsami.6b10314
B. Mahler, N. Lequeux, B. Dubertret. Ligand-controlled polytypism of thick-shell CdSe/CdS nanocrystals. J. Am. Chem. Soc. 2010, 132, 953. https://doi.org/10.1021/ja9034973
B. Chon, S. J. Lim, W. Kim, J. Seo, H. Kang, T. Joo, J. Hwang, S. K. Shin. Shell and ligand-dependent blinking of CdSe-based core/shell nanocrystals. Phys. Chem. Chem. Phys. 2010, 12, 9312. https://doi.org/10.1039/B924917F
B. N. Pal, Y. Ghosh, S. Brovelli, R. Laocharoensuk, V. I. Klimov, J. A. Hollingsworth, H. Htoon., Giant CdSe/CdS core/shell nanocrystal QDs as efficient electroluminescent materials: strong influence of shell thickness on light-emitting diode performance. Nano Lett. 2012, 12, 331. https://doi.org/10.1021/nl203620f
O. Chen, J. Zhao, V. P. Chauhan, J. Cui, C. Wong, D. K. Harris, H. Wei, H. S. Han, D. Fukumura, R. K. Jain and M. G. Bawendi. Compact high-quality CdSe/CdS core/shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat. Mater. 2013, 12, 445. https://doi.org/10.1038/nmat3539
C. Pu, X. Dai, Y. Shu, M. Zhu, Y. Deng, Y. Jin, X. Peng. Electrochemically-stable ligands bridge the photoluminescence-electroluminescence gap of quantum dots. Nat. Commun. 2020, 11, 937. https://doi.org/10.1038/s41467-020-14756-5
S. Kim, J.-A. Kim, T. Kim, H. Chung, S. Park, S.-M. Choi, H.-M. Kim, D.-Y. Chung, E. Jang. Efficient blue-light-emitting Cd-free colloidal quantum well and its application in electroluminescent devices. Chem. Mater. 2020, 32, 5200. https://doi.org/10.1021/acs.chemmater.0c01275
J. Jiang, S. Zhang, Q. Shan, L. Yang, J. Ren, Y. Wang, S. Jeon, H. Xiang, H. Zeng. High-color-rendition white QLEDs by balancing red, green, and blue centres in eco-friendly ZnCuGaS:ln@ZnS quantum dots. Adv. Mater. 2024, 36. e2304772. https://doi.org/10.1002/adma.202304772
S. Zhou, Y. Ma, X. Zhang, W. Lan, X. Yu, B. Xie, K. Wang, X. Luo. White-Light-Emitting Diodes from Directional Heat-Conducting Hexagonal Boron Nitride Quantum Dots. ACS Appl. Nano Mater. 2020, 3, 814. https://doi.org/10.1021/acsanm.9b02321
J. Choi, W. Choi, D. Y. Jeon. Ligand-Exchange-Ready CuInS2/ZnS QDs via Surface-Ligand Composition Control for Film-Type Display Devices. ACS Appl. Nano Mater. 2019, 2, 5504. https://doi.org/10.1021/acsanm.9b01085
T. Afrin, S. Fatma. Anticipating behavior of advanced materials in healthcare, In: A. Tiwari, A.N. Nordin (Eds.), Advanced biomaterials and biodevices, Scrivener Publishing LLC, Beverly, 2014, pp. 243-287. https://doi.org/10.1002/9781118774052.ch7
W. Su, D. Yang, Y. Kong, W. Zhang, J. Wang, Y. Fei, R. Guo, J. Ma, L. Mi. AglnS2/ZnS QDsfor noninvasive cervical cancer screening with intracellular pH sensing using fluorescence lifetime imaging microscopy. Nano Res. 2022, 15, 5193. https://doi.org/10.1007/s12274-022-4104-1
Z. Piao, D. Yang, Z. Cui, H. He. S. Mei, H. Lu, Z. Fu, L. Wang, W. Zhang, R. Guo. Recent advances in metal chalcogenide quantum dots: from material design to biomedical applications. Adv. Funct. Mater. 2022, 32, 2207662. https://doi.org/10.1002/adfm.202207662
X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale, M. P. Bruchez. Immunofluorescent labeling of cancer marker her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol. 2003, 21, 41. https://doi.org/10.1038/nbt764
S. Mallick, P. Kumar, A. L. Koner. Freeze-Resistant Cadmium-Free QDsfor Live-Cell Imaging. ACS Appl. Nano Mater. 2019, 2, 661. https://doi.org/10.1021/acsanm.8b02231
A. T. Nguyen, D. R. Baucom, Y. Wang, C. D. Heyes. Compact, fast blinking Cd-free QDsfor super-resolution fluorescence imaging. Chem. Biomed. Imaging 2023, 1, 251. https://doi.org/10.1021/cbmi.3c00018
Y. Li, P. Zhang, W. Tang, K. J. Mchugh, S. V. Kershaw, M. Jiao, X. Huang, S. Kalytchuk, C. F. Perkinson, S. Yue, Y. Qiao, L. Jing, M. Gao, B. Han. Bright, magnetic NIR-II quantum dot probe for sensitive dual-modality imaging and intensive combination therapy of cancer. ACS Nano 2022, 16, 8076. https://doi.org/10.1021/acsnano.2c01153
H. Xue, J. Zhao, Q. Zhou, D. Pan, Y. Zhang, Y. Zhang, Y. Shen. Boosting the Sensitivity of a Photoelectrochemical Immunoassay by Using SiO2@polydopamine Core-Shell Nanoparticles as a Highly Efficient Quencher. ACS Appl. Nano Mater. 2019, 2, 1579. https://doi.org/10.1021/acsanm.9b00050
M. Freitas, M. M. P. S. Neves, H. P. A. Nouws, C. Delerue-Matos. Quantum dots as nanolabels for breast cancer biomarker HER2-ECD analysis in human serum. Talanta 2020, 208, 120430. https//doi.org/10.1016/j.talanta.2019.120430
M. Freitas, H. P. A. Nouws, E. Keating, V. C. Fernandes, C. Delerue-Matos. Immunomagnetic bead-based bioassay for the voltammetric analysis of the breast cancer biomarker HER2-ECD and tumor cells using QDsas detection labels. Mikrochim. Acta 2020, 187, 184. https://doi.org/ 10.1007/s00604-020-4156-4
S. A. Diaz, G. Lasarte-Aragones, R. G. Lowery, Aniket, J. N. Vranish, W. P. Klein, K. Susumu, I. L. Medintz. Quantum dots as Forster Resonance Energy Transfer Acceptors of Lanthanides in Time-Resolved Bioassays. ACS Appl. Nano Mater. 2018, 1, 3006. https://doi.org/10.1021/acsanm.8b00613
D. N. Williams, S. Pramanik, R. P. Brown, B. Zhi, E. McIntire, N. V. Hudson-Smith, C. L. Haynes, Z. Rosenzweig. Adverse interactions of luminescent semiconductor quantum dots with liposomes and shewanella oneidensis. ACS Appl. Nano Mater. 2018, 1, 4788. https://doi.org/10.1021/acsanm.8b01000
G. Lv, W. Guo, W. Zhang, T. Zhang, S. Li, S. Chen, A. S. Eltahan, D. Wang, Y. Wang, J. Zhang, P. C. Wang, J. Chang, X. -J. Liang. Near-infrared emission CulnS/ZnS quantum dots: all-in-one theranostic nanomedicines with intrinsic fluorescence/photocoustic imaging for tumor phototherapy. ACS Nano 2016, 10, 9637. https://doi.org/10.1021/acsnano.6b05419
V. K. Singh, H. Mishra, R. Ali, S. Umrao, R. Srivastava, S. Abraham, A. Misra, V. N. Singh, H. Mishra, R. S. Tiwari, A. Srivastava. In situ functionalized fluorescent WS2-QDs as sensitive and selective probe for Fe3+ and a detailed study of its fluorescence quenching. ACS Appl. Nano Mater. 2019, 2, 566. https://doi.org/10.1021/acsanm.8b02162
S. R. Ahmed, J. Cirone, A. Chen. Fluorescent Fe3O4 quantum dots for H2O2 detection. ACS Appl. Nano Mater. 2019, 2, 2076. https://doi.org/10.1021/acsanm.9b00071
C. Wei, X. Wei, Z. Hu, D. Yang, S. Mei, G. Zhang, D. Su, W. Zhang, R. Guo. A fluorescent probe for Cd2+ detection based on the aggregation-induced emission enhancement of aqueous Zn-Ag-ln-S quantum dots. Anal. Methods 2019, 11, 2559. https://doi.org/10.1039/C9AY00716D
C. C. Hewa-Rahinduwage, X. Geng, K. L. Silva, X. Niu, L. Zhang, S. L. Brock, L. Luo. Reversible electrochemical gelation of metal chalcogenide quantum dots. J. Am. Chem. Soc. 2020, 142, 12207. https://doi.org/10.1021/jacs.0c03156
A. Mirzaei, Z. Kordrostami, M. Shahbaz, J. Y. Kim, H. W. Kim. Resistive-based gas sensors using quantum dots: a review. Sensors 2022, 22, 4369. https://doi.org/10.3390/s22124369
X. Geng, X. Liu, L. Mawella-Vithanage, C. C. Hewa-Rahinduwage, L. Zhang, S. L. Brock, T. Tan, L. Luo. Photoexcited NO2 enables accelerated response and recovery kinetics in light-activated NO2 gas sensing. ACS Sens. 2021, 6, 4389. https://doi.org/10.1021/acssensors.1c01694
T. Jiang, X. Liu, J. Sun. UV-enhanced NO2 sensor using ZnO QDs sensitized SnO2 porous nanowires. Nanotechnology 2022, 33, 185501. https://doi.org/10.1088/1361-6528/ac49c1
Q. Lin, F. Zhang, N. Zhao, L. Zhao, Z. Wang, P. Yang, D. Lu, T. Dong, Z. Jiang. A flexible and wearable nylon fiber sensor modified by reduced graphene oxide and ZnO QDs for wide-range NO2 gas detection at room temperature. Materials 2022, 15, 3772. https://doi.org/10.3390/ma15113772
Y. Liu, H. Wang, K. Chen, T. Yang, S. Yang, W. Chen. Acidic site-assisted ammonia sensing of novel CuSbS2 quantum dots/reduced graphene oxide composites with an ultralow detection limit at room temperature. ACS Appl. Mater. Interfaces 2019, 11, 9573. https://doi.org/10.1021/acsami.8b20830
I. Sharma, K. N. Kumar, J. Choi. Highly sensitive chemiresistive detection of NH3 by formation of WS2 nanosheet and SnO2 quantum dot heterostructures. Sensors Actuators B Chem. 2023, 375, 132899. https://doi.org/10.1016/j.snb.2022.132899
K. Rathi, K. Pal. Ruthenium-decorated tungsten disulfide quantum dots for a CO2 gas sensor. Nanotechnology 2020, 31, 135502. https://doi.org/10.1088/1361-6528/ab5cd3
B. Bertrand, S. Hermelin, S. Takada, M. Yamamoto, S. Tarucha, A. Ludwig, A. D. Wieck, C. Bäuerle, T. Meunier. Fast spin information transfer between distant quantum dots using individual electrons, Nature Nanotech. 2016, 11, 672. https://doi.org/10.1038/nnano.2016.82
L. Pavesi, L D Negro, C Mazzoleni, G Franzo, F Priolo. Optical gain in silicon nanocrystals. Nature. 2000, 408, 440. https://doi.org/10.1038/35044012
Y. J. Jeong, D. -J. Yun, S. H. Noh, C. E. Park, J. Jang. Surface modification of CdSe quantum-dot floating gates for advancing light-erasable organic field-effect transistor memories. ACS Nano. 2018, 12, 7701. https://doi.org/10.1021/acsnano.8b01413
Y. Wu, Y. Wei, Y. Huang, F. Cao, D. Yu, X. Li, H. Zeng. Capping CsPbBr3 with ZnO to improve performance and stability of perovskite memristors. Nano Res. 2017, 10, 1584. https://doi.org/10.1007/s12274-016-1288-2
S. R Bauers, M. B. Tellekamp, D. M Roberts, B. Hammett, S. Lany, A. J Ferguson, A. Zakutayev, S. U Nanoyakkara. Metal chalcogenides for neuromorphic computing: emerging materials and mechanisms. Nanotechnology 2021, 32, 372001. https://doi.org/10.1088/1361-6528/abfa51
K. C. Kwon, J. H. Baek, K. Hong, S. Y. Kim, H. W. Jang. Memristive devices based on two- dimensional transition metal chalcogenides for neuromorphic computing. Nano-micro Lett. 2022, 14, 58. https://doi.org/10.1007/s40820-021-00784-3
G. Cao, P. Meng, J. Chen, H. Liu, R. Bian, C. Zhu, F. Liu, Z. Liu. 2D material based synaptic devices for neuromorphic computing. Adv. Funct. Mater. 2020, 31, 2005443. https://doi.org/10.1002/adfm.202005443
M. Xu, X. Mai, J. Lin, W. Zhang, Y. Li, Y. He, H. Tong, X. Hou, P. Zhou, X. Miao. Recent advances on neuromorphic devices based on chalcogenide phase-change materials. Adv. Funct. Mater. 2020, 30, 2003419. https://doi.org/10.1002/adfm.202003419
Z. Lv, Y. Wang, J. Chen, J. Wang, Y. Zhou, S. -T. Han. Semiconductor quantum dots for memories and neuromorphic computing systems. Chem. Rev. 2020, 120, 3941.https://doi.org/10.1021/acs.chemrev.9b00730