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Abstract: Nanotechnology advancements in recent times have led to the development of various metal chalcogenide quantum dots 

(QDs), including binary QDs (metal sulfide, selenide, and telluride) and alloyed QDs (cadmium selenium telluride). These QDs are valued for 
their distinctive optoelectronic and functional properties, including 
intrinsic (quantum confinement) and extrinsic (high surface area) 
effects influenced by size, shape, and surface characteristics. 
This review article mainly focuses on the most recent 
advancements in the synthesis, properties, and applications of 
metal chalcogenide QDs. We cover different synthesis 
approaches, including solvothermal, wet chemical, aqueous, 
photochemical, mechanochemical, and green synthesis, and 
explain how these techniques impact their properties. We then 
examine the diverse applications of QDs, including LEDs, 
biomedical, photovoltaics, neuromorphic, photodetector, 
photocatalysis, and sensing. Lastly, we explore the challenges 
and future opportunities for metal chalcogenide quantum dots. 
This article will provide a deeper understanding of the metal 
chalcogenide QDs. Moreover, it is beneficial for the researchers to 
make efficient QDs with various applications. 
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1. Introduction 

Modern, multidisciplinary nanotechnology has arisen from the 
development and research with inorganic nanomaterials 
which include metal, metal oxide, and semiconductor 
nanoparticles.1 
Quantum Dots (QDs) were first discovered by the Russian 
scientist Alexey Ekimov in 1981 in a glass matrix while he 
was employed at the Vavilov State Optical Institute in St. 
Petersburg.2 However, it was Louis Brus, a semiconductor 
researcher at AT&T Bell Laboratories in New Jersey, who 
found the first colloidal solutions of QDs.2 Brus referred to 
QDs as "small semiconductor crystallites". Later Moungi 
Bawendi and coworkers worked extensively to synthesize 
CdS, CdSe, and other chalcogenide QDs in the upcoming 
years.3 For their contribution to the discovery and synthesis of 
QDs, Alexey Ekimov, Louis Brus and Moungi Bawendi were 
awarded the Nobel Prize in chemistry in 2023.    

Pratibha Chahal received her master's degree in 
chemistry with a specialization in physical 
chemistry from Maharshi Dayanand University, 
Rohtak in 2020. She qualified Net JRF (2022), 
HTET (2022), and CTET (2023). At 
present, she pursuing PhD from SRM University, 
Delhi-NCR, Sonipat under the guidance of Dr. 
Avinash Singh. Her research interest lies in 
semiconductor QDs and nanotechnology. 

Aayushi Goel is from Samalkha, Haryana, India. 
She completed her BSc in Chemistry from 
Kurukshetra University, Kurukshetra, Haryana 
and is pursuing MSc Chemistry (2024) from SRM 
University, Delhi-NCR, Sonepat. Her research 
interest is in nanotechnology and material 
science.  

Dr. Avinash Singh studied BSc (Hons), Chemistry and MSc, 
Chemistry from Banaras Hindu University, and 
obtained his PhD from Radiation & 
Photochemistry Division, Bhabha Atomic 
Research Centre (BARC), Mumbai, India in 2018. 
Currently, he is serving as Assistant Professor in 
the Department of Chemistry, SRM University 
Delhi-NCR, Sonepat. His research interest lies in 
semiconductor nanomaterials, radiation chemistry 
and photochemistry. 

In the past few years, semiconductor metal chalcogen based 
QDs have attracted wide interest in bioimaging and 
biomedical industries due to their good optoelectronic 
properties.4 QDs are semiconductor nanocrystals that are 
small enough to display size-dependent characteristics and 
come in the range of 1-10 nm.4 These are zero-dimensional 
nanomaterials, the terms "quantum" and "dot" imply that the 
particles—electrons, which transfer electricity—are restricted 
and have well-defined energy levels.5 They are restricted in 
all three spatial directions6 due to which these nanocrystals 
are also referred to as “low-dimensional” quantum 
structures.7,8 
Most of the QDs are made from the combination of metal 
(group I and II) and chalcogens (group VI).9 Chalcogens are 
the elements in the periodic table that belong to group VI 
elements including oxygen, sulfur (S), selenium (Se), 
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tellurium (Te), and polonium (Po).10 Out of these, the metal 
oxide is not considered chalcogenide as these oxides have 
different chemical properties in comparison to sulphide, 
selenide, and telluride11. The common chalcogens which are 
used in the preparation of QDs are sulphur, selenium, and 
tellurium12. Po is highly radioactive hence it is not used in the 
synthesis of QDs. The synthesis of semiconductor NCs in an 
aqueous medium primarily relies on Lewis’s acid/base 
reactions, which invariably involve H+, OH-, and H2O. A 
chemical species that gives away an electron pair is called a 
Lewis base, and the one that accepts a base's electron pair is 
termed a Lewis acid.13 These are further divided based on of 
their polarizability by the HSAB concept (Hard and soft acids 
and bases). “Soft” species are large in size, low-charge and 
weakly polarizable are “Hard” species.  However, they are 
relatively small, and high-charge.13 This is the one of 
important concepts for the understanding of solubility of 
various kinds of compounds. Chalcogen ions like S2−, Se2−, 
and Te2− are considered soft bases, whereas transition metal 
ions, based on their oxidation state, can be “soft” acids13 like 
Cd2+, or “borderline” acids, such as Pb2+ and Zn2+. According 
to the HSAB principle, chalcogens easily make insoluble 
compounds with the most of transition metal ions in water 
because of the poor solubility of their products. When 
compared with solids created by hard−hard interactions, the 
bonds in soft−soft interactions are stronger, which provides 
transition metal chalcogenides with their semiconducting 
properties.13 We can modify the size and composition, to 
obtain luminescence across the entire spectrum i.e. from UV 
to IR.13 The colloidal technique, which precipitates 
semiconductor crystals from a solution, yields the smallest 
structures.14  
QDs are classified into different categories: binary, ternary or 
quaternary15 based on their composition. A binary QD has two 
elements (most commonly one metal from group II (Zn, Cd, 
Hg) and one chalcogen). Similarly, ternary, and quaternary 
QDs consist of three and four elements respectively. 
Examples of some most widely used binary QDs are ZnS, 
CdS, CdSe, etc. ZnCdS, ZnCdSe, are CuInS are examples of 
ternary QDs. Copper Zinc Tin Selenide (CZTS) is an example 
of quaternary QDs. Chemically and structurally, ternary I-III-VI 
and binary II-VI semiconductors differ from one another. PbS, 
CdS, or InAs are examples of binary semiconductor 
compounds that can be used to create binary QDs, which are 
semiconductor crystals at the nanoscale size.16 Ternary QDs 
composed of group I-III-VI elements exhibit lower toxicity and 
radiation stability elements which sparked increased interest 
in their application to cancer treatment.17 The term "artificial 
atoms"18 is frequently used to describe them since they can 
be made to resemble actual atoms in terms of their discrete 
electronic energy levels and electronic wave functions.19  
One of the most extensive studies of chalcogenide based 
QDs is of II-VI semiconductors. Cadmium selenide (CdSe) is 
among the most significant semiconductors that have a size 
less than the Bohr radius of exciton (5.7 nm)20 with a 
moderate band gap (Eg) of 1.75 eV at 300 K.21 CdSe QDs 
are highly luminescent, fluorescent and have better quantum 
yield with flexible processability.22 It was possible to create 
and analyze a CdSe QDs sensitized solar cell (QDSSC). It is 
possible to create QDs that have the potential to both absorb 
and emit light across the whole solar spectrum.22 
Saad et al.23 reported the formation of CdSe QDs attached 
with chosen metal phthalocyanine (MPc) (like ZnPc and 
CuPc), employing the hot-injection organometallic approach.  
The resulting QDs exhibit same particle size and spherical 
morphology. They found CdSe QDs show clear 
photoluminescence (PL) peak of shorter wavelength.23 QDs 
have the capacity for sensing as have proven beneficial in 
different specific applications, such as medicine and 
optoelectronics. Their intrinsic photostability, long 
fluorescence lifetime, and excitation wavelength far from the 
emission are the key justifications for their application in 
medicine.24 

 

 
 
Figure 1: The band structure from metal to bulk semiconductor to QDs and 

molecules. 

 
1.1 Properties 
QDs and bulk materials differ in certain ways.24,25 Bulk 
materials are bigger whereas QDs are so small, they have a 
large surface-to-volume ratio, results in QDs exhibit a high 
degree of reactivity. In contrast, bulk materials are 
significantly large. Unlike, bulk materials, which present a 
continuous range of energy levels, QDs feature discrete 
quantized energy levels shown as delta-like function in the 
density of states23,24 demonstrated in figure 2. The smallest 
QDs can be achieved using the colloidal technique, where 
semiconductor crystals are precipitated out of a solution26. 
Temperature is an essential component in the synthesis 
process, and using high boiling point solvents helps to 
maintain controlled reactions.26 Nanocrystallites, can exhibit 
optical, electronic, and structural characteristics that are 
frequently absent from both isolated molecules and 
macroscopic solids.27 Nanocrystallites of semiconductors 
have specific electronic transitions that are tunable with 
size28. They can be highly polarizable when they are excited, 
making them useful for optoelectronic applications.28 Lia et 
al.29 reported suitable applications of ZnS QDs that optical 
properties can be changed based on their size due to 
quantum size effect. As discussed QDs have size in 
nanometer scale, and are made up of element from groups II 
to VI or III to V, which have dimensions smaller than the Bohr 
exciton radius.30,31 

 
Figure 2: Variation of density of states for 3D, 2D, 1D and 0D materials 
 
Quantum Confinement Effect: Another important effect 
which describes the particle size i.e. Quantum confinement 
effect. Quantum confinement effects elucidate the behavior of 
electrons through the use of energy levels, potential holes, 
electron energy bands, valence bands, and conduction 
bands. This phenomenon is observed when the particle size 
is significantly smaller than electron’s wavelength 
consequently, the band gap energy increases as the QDs 
diameter decreases. As a result, both the absorption and 
emission spectral band edges of the QDs shift to shorter 
wavelengths as the particle size decreases, showing 
significant size dependence.32 Andersen et al.33 reported that 
quantum confinement effect creates the energy levels further 
a part as the particles size reduced. They study various 
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features due to the varying size limits on each energy level. 
One significant effect of quantum confinement in CdSe 
semiconductor QDs is that rises in the band gap with 
decreasing QD size. Since this is observed as a rise in the 
lowest exciton peak's energy as the QD's radius decreased.33  
 

 
Figure 3: Variation in band gap with the size of the QDs as a consequence 

of quantum confinement effect. 

 
Size-dependent: The optical properties of metal 
chalcogenide QDs depends upon shape and size of the QDs. 
Smaller particle size leads to a larger band gap hence the 
excitonic peak position is towards the smaller wavelength 
which keep on increasing upon increasing in particle size.34 A 
small and uniform sized QD have a clear excitonic peak and 
a sharp emission profile. A color change from pale green to 
pale orange and finally to red with increasing temperature, 
showing a rise in particle size from Oswald ripening34 (fig. 3). 
Because of their small size, QD electrons are trapped in a 
small space, even when their sizes are smaller than the 
exciton Bohr radius.35 This implies that a significant energy 
level splitting occurs after an electron and a hole separate in 
an electron-hole pair.35 
 
The Bohr exciton radius refers to the distance in the model of 
the exciton pair (electron-hole pair). In bulk, the size exceeds 
the Bohr radius (figure 4). hence the quantum confinement 
effect is not observed. However, upon reduction in size below 
the Bohr radius (in the nano region) the energy level of the 
semiconductor becomes discrete due to confinement of 
exciton pair which is described as the quantum confinement 
effect.  

 
 
Figure 4: The Bohr radius in the bulk and nanocrystals 

 
The band gap calculated by the Tauc equation (equation 1) 
and the particle size calculated by the Brus equation 
(equation 2) provides an estimate of the particle size.36 
The band gap calculated by the Tauc equation (equation 1) is 
given below: 
Tauc equation: 

(αhν) = B(hν-Eg)r  (1) 
 

B = constant, r is the index which depends on nature of the 
electronic transition (r = ½ for direct band gap semiconductor 
and r = 2 for indirect band gap semiconductor).  

α = absorption coefficient 
hν is the photon energy 
Eg = optical band gap 
Tauc equation is used to calculate optical transition energy.  
 
Using CdS and CdSe as examples, Brus (1984) provided the 
first theoretical calculation for a spherical semiconductor 
colloidal nanocrystal based on effective mass 
approximation.37 The band gap energy in Brus's calculation is  

 
∆E(r)=Eg+[h2/8r2( /m8

e+1/m8
h)] (2) 

 
Eg= bulk band gap 
h= Planck’s constant, r= radius of QD 
me is the mass of electron, mh is the mass of electron hole 
 

Apart from these two equations Scherrer equation can also 
be employed for the determination of mean size of particle 
using the XRD pattern. The Scherrer equation (equation 3) 

 
D= Kλ/βcosθ   (3) 

 
K is the Scherrer constant, λ is wavelength of the X-ray 
beam, β is the Full width at half maximum (FWHM) of the 
peak, θ is the Bragg angle. 
The Scherrer constant, whose value is typically taken to be 
0.9, indicates the particle's form38. To determine the crystal 
grain size, the Scherrer equation utilizes the width of the 
largest XRD peak for a specific sample.38 
 
Composition of the QDs: The optical properties of the QDs 
is also governed with the composition of the QDs. A bulk 
semiconductor having smaller size metal ions and 
chalcogenide ions have large band gap and a semiconductor 
having bigger size metal ions and chalcogenide ions have 
small band gap. For example- the band gap of ZnS, ZnSe 
and ZnTe are 3.97, 3.10 and 2.26 eV respectively. Similarly, 
bulk CdS, CdSe and CdTe have band gaps of 2.4, 1.74, and 
1.49 eV respectively.       
 
Surface to volume ratio: It is well established that the 
melting temperature of nanoparticles decreases as the 
surface-to-volume ratio increases. The shape also has a 
prominent role in determining the surface-to-volume ratio of 
the particles.39 The shape factor compares the contact 
regions of spherical nanoparticles with non-spherical particles 
that have the same volume.40 It is serves for account the 
shape difference, especially in polyhedral nanoparticles.40  
The simplest QDs are binary which are synthesized using 
one metal precursor and a chalcogenide. Zinc sulfide (ZnS), 
identified as II-VI binary compound, particular corresponding 
to a band gap of 4.49 eV.41 In addition, ZnS QDs are non-
toxic and have good chemical stability than various 
semiconductor QDs. As a result, ZnS QDs are well-suited for 
use in electroluminescent devices, light emitting diodes 
(LEDs), flat-panel displays, sensors, optoelectronic devices 
and photocatalysis in water purification.41  
The another binary QD i.e. Cadmium selenide NCs display a 
range of colors and luminescence, with smaller crystal sizes 
corresponding to higher energy transitions.30,42  
 
2. Synthesis of Chalcogenide QDs 
Binary QDs are synthesized using one metal precursor and a 
chalcogenide. Li et al.41 adeptly formulated using a controlled 
solvothermal synthesis approach with a size of not more than 
3 nm. The method is much easier for controlling size than the 
other traditional methods. Also, the absorption and 
luminescence showed new characteristics which may be 
caused by the quantum  
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Figure 5: Various Techniques for Synthesis of Nanomaterials. 

 
confinement effect including a considerable concentration of 
point defects in the lattice. Selecting a solvent is also an 
essential consideration for the wet chemical synthesis of 
QDs.43 CdSe nanostructures using hot-injection method in 
aqueous solvent were synthesized successfully. 
CdSe particle sizes from 
2.27 nm to 3.75 nm have controllable optical properties. The 
stabilizing agents such as TOP-TOPO, MPA, starch etc. used 
to synthesize high-quality CdSe QDs.42 Generally, high-
quality CdSe QDs occur in organic solvent through a hot 
injection method that employs long-chain hydrocarbon as 
ligands.44 
Earlier, we recognized the efficient, one pot approach and 
easily scalable aqueous formation of starch capped CdSe 
QDs by photoirradiation and further explored its applications 
in detecting heavy metal ions.8 CdSe QDs are among the 
most extensively studied and important II-VI semiconductors. 
It has optoelectronic properties due to very small size (in nm 
range) that is smaller than Bohr radius of exciton which is 
known as quantum confinement effect. QD are prepared 
using different methods as discussed above. The stable and 
highly luminescent QDs can be prepared using reactivity 
variation among Cd and Zn as well as Se and S precursors 
which have a wider range of emission wavelength (500-
600nm)45. It focuses on the synthesis of CdSe QDs without 
requiring any extra additional reducing agent, no inert 
atmosphere or high temperature.8 The TEM studies revealed 
that the size of QDs is very small which confirms the 
presence of strong confinement effect. QDs once extracted 
are used in the detection of Cu2+, Hg2+, and Cr6+ ions.8 
 
Figure 5 summarizes the various methods for QD production, 
showing that top-down methods reduce bulk material sizes, 
while bottom-up methods use chemical precursors from 
group II-VI elements for QDs synthesis.  
Top-down approach: It includes breaking down large pieces 
of particles into nanostructures. This approach is good for 
making structures with long-range order and macroscopic 
connections. Strategies utilized for top-down approaches are 
X-ray lithography and E-beam lithography.47 
Bottom-up approach: It includes collecting single atoms into 
bigger nanostructures. This approach is best for gathering 
and building up short-range order at nanoscale 
measurements. Strategies utilized for bottom-up approaches 
incorporate pyrolysis, solvothermal forms, and sol-gel 
strategies.47 
The synthesis method used can affect the size of the QDs, 
which in turn affects their characteristics and applications. 
This category can be divided into vapor phase and wet 
chemical methods. 
Hydrothermal technique: A productive technique that creates 
QDs in an aqueous medium using an autoclave. Using this 
technique, inorganic salt is crystallized in an aqueous 
medium at a temperature and pressure that are regulated.48 

The electrochemical method: An affordable technique that 
creates QDs with distinctive chemical and physical properties 
through electrochemical etching.49 
Hot-injection: A novel method that produces homogeneous 
nucleation by supersaturating monomers through fast 
precursor injection. It is common practice to create 
monodisperse colloidal QDs using this technique.50 
Microwave synthesis:  A quick and affordable way to create 
QDs through microwave heating. 
Ligand exchange: A well-studied method that uses 
bifunctional ligands to substitute the original ligands on the 
QD surface, making them water-soluble. This method is 
frequently employed for transferring QDs to an aqueous 
phase.  
 
This category includes phase and wet chemical methods. 
Colloidal synthesis, a wet chemical method, has gained 
considerable interest in preparing QDs. Wet chemical 
methods are among the most widely used techniques for the 
synthesis of QDs. It includes the synthesis of QDs using 
aqueous and non-aqueous (organic) solvent. Various 
methods such as organometallic route, soft-chemical method, 
sonochemical method, hydrothermal method, electrochemical 
method are widely used methods for the formation of QDs.  
Another approach to preparing QDs is the photochemical 
process. Our group21 had synthesized Cadmium selenide 
(CdSe) QDs in an aqueous solution, utilizing UV photo-
irradiation with L-Cysteine as stabilizing agent. 
As photochemical method does not require the use of 
hazardous chemicals and stringent laboratory conditions. The 
QDs prepared from this method were found to have tunable 
fluorescence.23 CdSe QDs synthesized by wet chemical 
method is the most common route which involves 
organometallic precursor in a coordinating solvent.24 A 
decrease in the diameter of the particles below approximately 
10 nm leads to band gap enlargement and shifts toward the 
blue region and achieving the particle size about 3 nm in 
diameter.24 Bansal et al.29 have synthesized highly 
luminescent organic molecule capped Cadmium Sulphide 
(CdS) QDs with 69% PLQY in solutions.29 
Ternary QDs have gained considerable interest in recent 
years. Mohanta et al.30 reported bioconjugation of composite 
Cd1-xZnxS-NCs (with x=¼ 0, 0.5 and 0.75). According to 
proponents of bioconjugate nanocrystals (NCs), the decay 
component resulting from free exciton recombination occurs 
nine times more quickly than the component resulting from 
surface recombination emission. By understanding the 
photoluminescence decay of bio-conjugated NCs contributes 
in the applications like biomolecular labelling, sensing and 
electrophysiology.26  
Yakoubi et al.31 reported low-cost aqueous synthesis of 
ternary QDs. They produced high quality CdZnS QDs, 
including those doped with Cu. They observed that the 
fluorescence and absorption spectra of CdZnS nanocrystals 
could be tuned by changing the stoichiometric ratio of Cd/Zn 
precursors in the host CdZnS QDs capped with different 
capping agents like 3-mercaptopropionic acid (MPA), L-
cysteine, N-acetyl-L-cysteine (NAC), mercaptosuccinic acid 
(MSA), and glutathione (GSH). They successfully synthesized 
highly stable QDs and due to their favorable water 
dispersibility they can be used for biolabeling applications.31 
As the capping used was NAC, the photoluminescence 
quantum yield (PL QY) obtained was the highest (27%), MPA 
(9%) and GSH (3%).31 The dots formed with NAC as a 
capping agent display the highest PL QY.31 
One more work is reported where the synthesized QDs have 
impressive oxidation stability, acid stability, and photostability 
in both aqueous solutions and within the intracellular 
environment32. Zhan et al.32 described a double-shell 
structure through one-pot aqueous synthesis via microwave 
assisted technique. The size obtained was very small 
(~3.2nm) which implies that the CdSe/CdS/CdZnS core-shell 
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QDs can serve as a favorable candidate for fluorescent QDs 
based biological applications due to its lower cytotoxicity.33 
Colloidal QDs may be applied in bulk solution 
or as a solid film.39 The technique where the reactants 
typically interact in the gaseous phase at elevated 
temperatures and deposit on the surface of sample comes in 
the category of bottom-up approach method which is known 
as chemical vapor deposition.46  
 
Table 1: Synthesis of various QDs their particle size, band gap, and 

applications with references  

 

S.No. QDs Synthesis 
Route  

Particle 
Size 
(nm) 

Band 
Gap 
(eV)  

Applicati
ons 

Referen
ces 

1 ZnO Green 
synthesis  

5-10 3.37 Drug 
delivery 

53 

2 ZnS Green 
synthesis 

2-6 3.58 Used for 
fabrication 

54 

3 ZnSe Wet 

chemical 
method 

2-10 2.7 Vivo 

imaging 
and solar 

cells 

55,56,57 

4 CdO Aqueous 
synthesis  

2-3 1.36-
2.3 

In 
optoelectr

onic 
devices 

58 

5 CdS Mechanoch
emical 
method 

4-8 2.42 Economic
al 

approach 
for single-

target-
imaging 

applicatio
n. 

59 

6 CdSe Photochem
ical 

synthesis, 
electroche

mical  

2-7 1.91-
2.84 

Sensing 
heavy 

metal ions 7,20,21 

7 CdTe Aqueous 
synthesis 

3.4 1.44 Making 
LEDs and 
sensors 

4 

8 CdZnS Wet 
chemical 
method 

<5 2.4-
3.7 

In 
optoelec
tronics 
devices 
(used 
as 
photo-
conducti
ve and 
heteroju
nction 
solar 
cells) 

60,61 

9 CdZnSe Wet 
chemical 
method 

2-4 1.5-3 Fabricat
ion of 
QLEDs 

62 

10 CuInS2 Solvother
mal 
approach 

2-4 1.5 Fabricat
ion of 
affordab
le solar 
cells 
and 
enhanc
ed 
efficienc
y  

63 

 
Aboulaich et. al.31 reported synthesis of CdS via one-pot non-
injection hydrothermal approach that involved cadmium 
chloride, mercaptopropionic acid (MPA, and thiourea as initial 
substances. The average size of QDs obtained is 3.5nm 
which has the highest photoluminescence i.e. 20%.  The 
characterization of CdS@MPA QDs involved 
photoluminescence spectroscopy and UV-Vis, TEM, X-ray 

diffraction. As shown in figure 6(a) the UV−vis spectra of 
CdS@MPA QDs, synthesized with a Cd2+ /thiourea/MPA 
molar ratio of 1/1.7/2.3 and Cd2+ concentration of 5 mM, after 
different heating times (45 min, 1 h, 1.5 h, 2 and 3 h). The 
wavelength at which bulk CdS exhibits absorption edge is 
515 nm. All samples, with the exception of CdS QDs that 
were heated for three hours, had distinct initial excitonic 
peaks at 363, 369, 382, 387, and 409 nm for 45 minutes, 1h, 
1.5h, 2h, and 3 hours of heating, respectively. These peaks 
were linked to 1sh-1se excitonic transitions. The CdS 
sample’s absorption spectra (t = 3 h) are wider, yet the 
variance of the absorption peaks shows that the particles 
expand quickly as the reaction time extends.  The size 
dispersion gradually becomes less focused as a result of 
Ostwald ripening.31 With time, PL intensity shifted towards red 
region. Fig 6 (c) shows digitally prepared QDs after 3h. It is 
shows PL emission between 375 and 460nm.The colloidal 
solution of the as prepared QDs after 3 hours is shown in fig. 
6 (b). 
 
 

 
 
 
Figure 6 (a) UV-Visible (b) PL Spectra of CdS@MPA QDs after different 

reaction times at 100̊ C (c) Digital picture of CdS under UV excitation 
(reproduced with permission from ref 19. copyright 2012). 
 
 
 
 

Other important characterization methods include 
transmission electron microscopy (TEM) and X-ray powder 
diffraction (XRD). Both provide the information about the 
crystal structure of the QDs. Furthermore, TEM also provides 
the exact shape and size of primary QDs. Broad peaks in the 

XRD pattern of CdS@MPA QDs indicate the sample's nano- 
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Figure 7: XRD patterns of the as-prepared CdS@MPA QDs as a function 

of heating time (reproduced with the permission from ref 19. copyright 
2012). 
 
scale size (Figure 7) The peaks are found at 2θ = 26.5°, 
43.9°, and 51.6°, aligned with the (111), (220), and (311) 
directions, indicating that the nanoparticles have a cubic zinc 
blende form.31 
Meng et al.34 reported aqueous synthesis of ternary QDs i.e. 
CdZnS using solvothermal method. 
 

 
 
Figure 8: TEM images of CdS nano crystallites prepared under 

hydrothermal conditions for (a) 45 min, (b) 1.5 h, and (c) 3 h. Insets show 
the SAED patterns. (d−f) Corresponding size distributions (reproduced with 
the permission from ref 19. Copyright 2012). 

 
Figure 8(a-c) display the TEM images of the CdS 
nanocrystallites that were prepared during 45 minutes, 1.5 
hours, and 3 hours of heating, respectively. The 
corresponding selected area electron diffraction (SAED) 
patterns for CdS@MPA QDs are displayed in the insets of fig. 
8 (a–c). The dependence of CdS QD particle size on heating 
duration is confirmed by figure 8 (d–f).  

 
ZnCdS is a solid solution semi-conductor that combines the 
advantages of both ZnS and CdS materials by introducing 
ZnS into the lattice of CdS, resulting in a regulable crystal 
structure. The morphological and dimensional characteristics 
of the photocatalysts were investigated with scanning 
electron microscopy (SEM). As shown in figure 9 (a, b), the 
CdZnS QDs exhibit a uniform and regular surface 
morphology and the average size recorded was about 300 
nm. 
 
The XRD patterns of ZnCdS are illustrated in figure 10. The 
precursor pure ZnCdS exhibits prominent peaks at 2θ = 
24.8°, 26.5°, 28.1°, 43.6°, 47.8°, and 51.8° aligning to (100), 
(002), (101), (110), (103), and (112) crystal planes of the 
hexagonal phase of CdS respectively. 
 

 
 
Figure 9: SEM images of CdZnS QDs showing globular morphology 

(reproduced with the permission from ref 43. copyright 2024) 

 
 

 
Figure 10: XRD patterns of ZnCdS. and corresponding peaks of ZnS and 

CdS (reproduced with the permission from ref. 43. copyright 2024) 

3. Applications 

Chalcogenide-based QDs have drawn prodigious research 
interest within optical-related devices, including photovoltaic 
cells, photodetectors, photosensors, photoelectrochemical 
devices, phototransistors, solar cells, catalysis, and drug 
delivery. When designing QDs for specific applications, 
several key factors should be considered, such as surface 
chemistry, size and shape, stability, toxicity, composition, and 
scalability. A variety of these applications are commercially 
accessible and have become integrated into our everyday 
lives (figure 11).  
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Fig. 11: Applications of Chalcogenide-Based QDs 

 
Below we detail notable works based on these applications. 
 
3.1 PHOTOVOLTAICS 
Metal chalcogenide QDs have promising uses in 
photovoltaics, particularly in solar cell technology. Firstly, their 
tunable bandgaps enable the optimization of light absorption 
across various wavelengths, increasing, the efficiency of solar 
energy conversion. This tunability also allows for the 
production of multi-junction solar cells, in which layers of QDs 
can be tailored to absorb different sections of the solar 
spectrum. Absorber material, multiple sensitizations, 
intermediate-band solar cells, multiple exciton generation, 
and tandem solar cells are a few ways metal chalcogenide 
QDs can be utilized in photovoltaics.65 Chen et al.66 
introduced devices used in photovoltaics that are equipped 
with nanomaterials to raise the energy conversion regulation 
and its efficiency. Devices made using chalcogenide QDs like 
CdS, CdSe, and CdTe in a liquid-type electrolyte have shown 
cell efficiencies lying from 3 to 6%.67 This is significant 
because it demonstrates the potential of these materials help 
to design better-performing solar energy systems. 
Furthermore, various strategies are being explored to 
improve the photocatalytic water-splitting capability of metal 
chalcogenide QDs. These include cocatalyst, element doping, 
creating heterojunction, and plasmonic material 
photosensitization.67 Alam et al.69 reported the combination of 
CdSe QDs with ZnO nanowires to create hybrid solar cells 
with up to 50-60% internal quantum efficiencies and 
sensitized-type solar cells with an efficiency of power 
conversion of roughly 2.7%, which are based on TiO2 inverse 
opal with CdSe QDs as sensitizers. Singh et al.70 reported 
avenues for improvement used to modify the bandgap of QDs 
(CdSe and CdTe), such as post-synthesis chemical 
remedies, co-sensitization, deposition techniques, and doping 
of sensitizers. 
 Zhu et al.71 introduced tandem solar cells that utilize lead 
chalcogenide (PbS, PbSe) QDs, which exhibit excellent 
quantum confinement effects and can include the full infrared 
range of solar radiation by changing their size. This makes 
them highly potential cost-effective infrared photovoltaic 
devices. The primary component influencing the CdS QDSSC 
performance, according to observations of Padmaperuma et 
al.72, appears to be the ICR process at the CdS QD/TiO2 
interface. According to Mumin et al.73 supercritical carbon 
dioxide synthesis was used to spread core-shell CdS/ZnS 
QDs into copolymers. Additionally, the layout of CdSe QD 
materials for converting energy purposes was helped by 
theoretical research using DFT calculations.74 By simulating 
various surface modifications or doping scenarios using DFT 
calculations, researchers can explore strategies to enhance 
specific properties of metal chalcogenides QDs for 
applications such as solar cells, optoelectronic devices, 
sensors, and catalysis. A table summarizing the photovoltaic 
properties of various metal chalcogenide QDs is mentioned 
here. 
 

Table 2: Various Metal Chalcogenide-based QDs and Their Photovoltaic 

Efficiency    

QDs Jsc (mA cm-2) Voc (V) PCE (%) Reference 

CdS/CdSe 15.77 0.579 0.521 74 
Zn-Cu-In-S 4.34 0.51 2.01 75 
CdSexTe1-x 20.78 0.653 8.21 76 
CdTe/CdSexT1-x 16.20 0.621 7.24 77 
CdTe 2.10 0.68 0.87 78 
Zn-Cu-In-Se 11.11 0.59 4.13 79 
Zn-Cu-In-Se 26.49 0.77 13.85 80 
CuInS2 11.33 0.68 3.13 81 
CdS/CdSe 32.247 0.629 8.28 82 
Zn-Cu-In-Se 26.98 0.772 13.84 83 
Zn-Cu-In-S-Se 25.51 0.78 14.4 84 
CdSeTe 10.048 0.664 3.379 85 

 
 
3.2 PHOTODETECTORS 
QD photodetectors have applications in visible and IR-light 
cameras, machine vision, spectroscopy, and fluorescent 
biomedical imaging. Photodetection can be observed by 
different kinds of devices, like light-dependent resistors or 
photodiodes. The traditional photodetectors are bulk 
semiconductor based hence they are not very stable and 
flexible. In addition, they have expensive substrates, and the 
movement of charge carriers is restricted. QDs have been 
playing an important role in integrating these pre-existing 
technological platforms to enhance their performance87.  
Tang et al.88 demonstrated a two-step ligand-exchange 
technique, by using this method an improved responsivity in 
PbS QDs photodetectors can be observed in the IR spectral 
region. Printing methods were also implemented to PbS QDs 
devices, including photodetector arrays90, and broadband 
photoconductors.89 IR photoconductive photodetectors are 
fabricated from Ag2Se QDs.91 By using a fast microwave-
polyol approach, photoconductors were developed from 
highly packed PbS QDs films.92                            
Infrared photodetectors are broadly used in security 
monitoring, the vision of machines, autonomous automobiles, 
as well as other fields.93,94 Traditional IR photodetectors are 
often based on materials like InGaAs and HgCdTe which 
offer commendable reliability, wide-band detection 
capabilities, high sensitivity, and long-time stability.95 While 
effective, these materials suffer from limitations such as 
complex production processes, substantial fabrication costs, 
and poor compatibility with silicon-based readout integrated 
circuits.96,97 Zhao et al.98 have explored lead chalcogenide 
colloidal QDs (CQDs) (PbTe, PbSe, and PbS, etc.)  to 
develop efficient and affordable IR photodetectors. Another 
exciting avenue is mercury chalcogenide CQDs, having 
similar advantages: solution processability, better 
compatibility with silicon substrates, and scant manufacturing 
costs. They hold great potential for use in IR imaging and 
detection.99,100 CQDs show potential for dual-band 
photodetectors due to their changeable bandgaps. These 
photodetectors are garnering significant interest due to their 
promising applications in biological detection, environmental 
surveillance, and optical communication. They can process 
signals from both visible (VIS) and short-wave infrared 
(SWIR) wavebands, providing greater precision and detailed 
images of detected materials compared to single band 
detectors. Zhao et al.101 have been exploring the detector 
utilizing HgTe along with CdTe CQDs as sensing layers. 
Between the layers of CdTe and HgTe, n-type ZnO is 
introduced. This layer achieves a responsivity of 0.5 AW-1 for 
the visible band (peaking at 700 nm) and 1.1 A W-1 for the 
SWIR band (peaking at 2100nm). The detectivity reaches 1.1 
× 1011 Jones at +3V (for VIS) and 4.5 × 1011 Jones at -2V (for 
SWIR). 
 
3.3 Photocatalysis 
Metal chalcogenide QDs are useful in photocatalysis arising 
from their proficiency in absorbing light over an extensive 
range from UV to visible regions, hence increasing sunlight 
harvesting. Their nanoscale dimension allows for an 
extensive surface area and many active reaction sites. They 
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also allow to separate electron-hole pairs efficiently, lowering 
recombination and boosting charge carrier lifespan, which is 
critical for photocatalysis. Functionalization and hybridization 
with other materials can enhance their performance. 
Photocatalysts can be applied in a variety of processes, such 
as treatment of wastewater, conservation energy, self-
cleaning applications, antifouling, sterilization, and air 
purification.102,103 Some semiconductors can mineralize 
organic contaminants, such as halo hydrocarbons, aromatics, 
insecticides, pesticides, surfactants, and dyes. Mainly binary 
chalcogenides such as TiO2, ZnO, CdS, ZnS, and Fe2O3 are 
utilized for photocatalytic properties. In addition to binary 
chalcogenides, some examples of ternary chalcogenides 
such as SrZrO3, PbCrO4, CuInS2, Cu2SnS3, XGaS2

104 (X= Ag 
or Cu), SnSb2S5 etc. and quaternary chalcogenides such as 
GeSbSeEr,104 Cu2ZnSnS4 etc. have also been used. 
Exposure of photocatalysts to light of an appropriate 
wavelength causes an electron within the valence band to 
absorb photon energy and become excited in the conduction 
band, leading to the creation of a hole in the valence band 
simultaneously. These holes and electrons participate in 
redox reactions on the semiconductor’s surface. A general 
reaction mechanism for the photocatalysis process can be 
represented as follows:  
 

 
Semiconductor                          Semiconductor (e-(cb) + h+(vb)) 

     
    e-(cb) + O2                                O2

-● 
      
   h+(vb) + H2O                        ●OH + H+ 

 
Organic molecules + ●OH     Degraded products 

 
The excited electron is capable of reducing substrates or 
combining with electron acceptors like O2, whether present on 
the semiconductor surface or dissolved in water, thereby 
converting it to a superoxide radical anion O2

-●. The hole, in 
contrast, can oxidize organic molecules to produce R+ or 
engage with –OH or H2O to form ●OH radicals. Other highly 
oxidizing like peroxide radicals also contribute to the 

photodegradation of organic substrates. The ₋OH radical is a 

very potent oxidizer and effectively decomposes azo dyes 
and pollutants. The photocatalysis process is explained in the 
figure given below (Figure 12):  
 
 

 
 
Figure 12: Schematic of generation of exciton pair and their reaction in the 

photocatalysis process.  
 
Photocatalysts play a significant role in various applications, 
including pollutant degradation, hydrogen formation via water 
splitting, and carbon dioxide reduction. Metal chalcogenides 
contribute to accelerating photoreactions, driving 
advancements in these fields. Weiss and Weix et al. 106,107 

demonstrated the Cd chalcogenide QDs were able to operate 
carbon-carbon coupling reactions. With the help of carbon 
QD-sensitized TiO2/Pt nanocomposites, light-driven H2 
production was achieved.108  
 
Enzymatic activation has been demonstrated separately by a
ssembling DNA cells and CdSe/CdZnS/ZnS core shell 
and CdSe/ZnS core–shell QDs.109 Metal chalcogenide QDs 
have been explored for photocatalytic air cleansing, including 
volatile organic compounds decomposition and the removal 
of air pollutants. Luminescent nanotags also be the 
application of metal chalcogenide QDs. Durmusoglu et al.110 
proposed using luminescent nanotags (hybrid coated PbS 
and PbS/CdS QDs) for authenticating fossil fuel products. 
Combining the luminescent properties of CdTe QDs with 
superparamagnetic maghemite (Fe2O3) cores, these QDs are 
hybrid nanoprobes. By incorporating these nanoprobes, one 
can efficiently detect and visualize defects or anomalies in 
materials submerged in water baths.111 Meng et al.112 created 
a catalyst for an effective photocatalytic nitrogen reduction 
process (PNMM) by loading bismuth metal on ZnCdS 
nanospheres. The photocatalyst´s ammonia generation 
efficiency was greatly enhanced by Bi nanoparticle under 
light. The 3% Bi@ZnCdS produced 58.93 µmolg-1h-1 
ammonia using lactic acid under air, nearly 7.7 times more 
efficient than pure ZnCdS. 
 
 
3.4 LED and Display 
One of the main applications of metal chalcogenide QDs is 
LEDs for the production of highly efficient and stable red, 
green, and blue light emissions. Metal chalcogenide QDs 
improve LEDs and display technologies by allowing for 
tunable emission qualities, which results in more brilliant 
colors and greater color purity. They enable more efficient 
light-emitting layers, which reduces energy usage and 
increases gadget lifespan. There are stability and lifetime 
concerns of organic LEDs and other LEDs. However, the 
QDs-based LEDs are inherently stable and have a longer 
lifetime. The lifetime of LEDs is affected by various factors 
like- oxidation, heat, exposure to UV light, etc. Various 
strategies like- cre-shell engineering, surface passivation, and 
architecture optimization are adopted to improve the lifetime 
of QDs.These QDs can often be carefully designed to emit 
light at specific wavelengths, which makes them useful for 
developing a variety of colors for LED displays and lighting 
applications. Furthermore, metal chalcogenide QDs have also 
been used to enhance the color rendering index (CRI) of 
LEDs, leading to more accurate and natural color 
reproduction. Additionally, metal chalcogenide QDs can be 
used to enhance the stability and lifetime of LEDs by 
improving their resistance to environmental influences 
including humidity and temperature. The PbX QDs can 
effectively be utilized in NIR-QLEDs with the ability to tune 
their emission wavelength by altering the size of QDs. The 
first PbX-based NIR-QLEDs achieved an external quantum 
efficiency (EQE) of 0.5%. Notably, EQE of NIR-QLEDs has 
enhanced from 2% in 2012 to 7.9% in 2018.113-117 The 
equation115 below can be utilized to calculate the efficiency of 
EQE of NIR-QLEDs: 
 

EQE = diff*inj*PLQY*out 

 

Where,diff - efficiency of injected carriers that successfully 
diffuse to QDs. 

inj - efficiency of these carriers that transfer into QDs and 
form excitons. 
χ - efficiency of these excitons whose states have spin-
allowed optical transitions (for colloidal QDs, χ =1). 

ηPLQY - internal QD PL QY, &out = light out-coupling 
efficiency. 

h 
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diff and inj are two key parameters for the efficiency of NIR-
QLED devices. In visible-QLEDs, it is important to choose 
suitable carrier transport layer materials118,119 to enhance ηinj. 
 The use of Cd-based QDs aims to augment material 
properties in conjugation with the developed shell and surface 
ligand.120,121 According to Pal et al.122, the performance of the 
device is affected by the thickness of the CdSe shell that 
encases the CdSe core of the QDs. Consequently, they 
achieved a maximum EQE with a 13-layer of the CdS shell, 
resulting in a brightness of about 1000 cdm-2 at a low starting 
voltage of approximately 3V.  
Chen et al.123 introduced a technique to develop a shell layer 
that reduces blinking in QDs by disregarding the lattice 
discrepancy within the core and shell. Cadmium (II) oleate 
and octanethiol are employed as precursors to create high-
quality CdSe/CdS core/shell QDs, effectively minimizing 
lattice mismatch. The PL peak width dropped from 96.2 meV 
for uncoated CdSe QDs to 67.1 meV for final results 
CdSe/CdS QDs (20nm), the highest PL QYs of 97% was 
observed, and 94% average on-time fractions, indicating 
significant suppression of blinking. 
Pu et al.124 presented the concept of an electrochemically 
stable surface-binding ligand. T50 > 3800 hours at 1000 cdm-2 
for red-emitting LEDs and T50> 10,000 hours at 100 cdm-2 for 
blue-emitting LEDs were achieved using the electrochemical 
inert ligand. Kim et al.125 reported blue QDs created from 
layers of ZnS, ZnTeSe, and ZnS QDs for the advancement of 
lnP-based QDs. They attained a full width at half maximum 
(FWHM) of 23 nm, with PL QYs of 85%. The EQE was 6.8% 
at 3.6 V and exhibited a peak luminance of 14146 cdm-2 was 
achieved. Jiang et al.125 proposed a ln3+-doped strategy in Zn-
Cu-Ga-S@ZnS QDs. Resulting PLQY value 95.3% was 
achieved. In ZnCuGaS:ln@ZnS, maximum luminance 1402 
cdm-2 and EQE 2.4 % was also achieved which gave a high 
CRI value of 94.9. Based on this red, green, and blue 
photoluminescence/electroluminescence (PL/EL) spectrum of 
a single-component QD that is stable and balanced, meeting 
the requirement of lighting and display.  
Hexagonal boron nitride sheets are incorporated in order to 
strengthen the thermal stability of devices constructed from 
CdSe/CdS QDs127. Additionally, CuInS2/ZnS QDs with 
dependable thiol-based ligands and amino-based ligands are 
recommended for the efficient development of film-type 
display devices128.  
  
Table 3: A summary of metal chalcogenide-based LED and display 

materials. 

QD 
Materials 

Method 
Performance 

Summary 
Reference 

CdSe 
Maximization of 
shell thickness 

efficiency 

Achieving 1000 cdm-

2 luminance with a 3 
V turn-on voltage.  

88 

CdSe 

Shell layering 
kinetics control for 

suppression of 
lattice mismatch 

PL QYs 97%, 
FWHM 67.1 meV 

(20 nm). 
89 

CdSe 
Electrochemically 

stable ligands 

T95> 3800 h at 1000 
cd m-2 luminance for 

red emission 
T50 surpasses 

10,000 h at 100 cd 
m-2 for blue. 

90 

ZnTeSe 
ZnS/ZnTeSe/ZnS 

quantum well 
structure 

EQE 6.8% at 3.6V, 
luminance 14146 cd 
m-2, FWHM 23 nm. 

91 

ZnCuGaS:ln
@ZnS 

Ln3+-doping 
PLQYs 95.3%, EQE 

2.4%, luminance 
1402 cdm-2 

92 

 
3.5 Biomedical  
Metal chalcogenide QDs help to promote biomedical imaging 
by providing improved luminescence, which improves picture 
quality and sensitivity. Their size-dependent optical features 
enable tunable emission wavelengths, allowing for multi-color 
imaging and tracking of many targets at the same time. 
Researchers are involved in the reduction of the toxicity of 
chalcogenide QDs for their use in biological applications by 

their surface functionalizing with biocompatible coatings, 
investigating less toxic core compositions, controlling QD size 
and dosage, and utilizing bioconjugation for targeted delivery. 
Their surface alterations allow for focused imaging of certain 
cells or tissues, which improves diagnostic accuracy. 
Furthermore, metal chalcogenide QDs have extended 
photoluminescence lifetimes and are resistant to 
photobleaching, increasing the reliability and duration of 
imaging experiments. Overall, these characteristics make 
them useful instruments for cancer diagnosis and immediate 
tracking of biological processes. In the biomedical field, the 
numerous uses of metal chalcogenide QDs such as 
bioimaging, single-QD tracking of extracellular and 
intracellular targets, therapeutics, fluorescence resonance 
energy transfer (FRET), gene technology, detection, etc.129 
Their small size, high quantum yield, and tunable emission 
wavelengths make them ideal for labeling and tracking 
biological molecules and cells in living systems. They can be 
constructed to focus on certain tissues or cells, making them 
useful for therapeutic delivery and intervention. QDs have 
been employed for different applications both in vivo and in 
vitro imaging. In 1998, the research teams of Alivisatos and 
Nie separately presented the first examples of a QD system 
in bioimaging. Su et al.130 developed a sensor to measure pH 
inside the cells utilizing AglnS2/ZnS QDs to differentiate 
between cancerous and healthy cells. This pH sensor can be 
used to image living cells with in various pH solutions and 
and cell lines by combining QDs with fluorescent lifetime 
imaging microscopy. Interestingly, this sensor examined the 
cervical cells that were ejected from 20 patients. According to 
findings, this sensor can provide a higher sensitivity to 
traditional cytology in the clinic, opening the door for effective 
noninvasive cervical cancer screening. In the context of 
COVID-19, metal chalcogenide QDs have been explored for 
their potential in bioimaging, biosensing, and even in 
therapies targeting virus.131 They can be engineered for 
prompt theranostic applications of severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2). Several II-IV QDs 
are known as fluorescent markers for bioimaging 
applications. For example, the CdSe/ZnS QDs linked with 
streptavidin and immunoglobulin G (lgG) are used to image 
the breast cancer cells through the recognition of HER2 
biomaker132 while CulnS2/ZnS QDs, which have low 
nonspecific binding and easily conjugated to other molecules, 
making them useful cell imaging markers.133 Additionally, 
Nguyen et al.134 demonstrated CulnS2/ZnS (CIS/ZnS) QDs 
that were linked to neutravidin served to trace biotinylated 
actin. Bioconjugated QDs are highly useful in targeted drug 
delivery, gene delivery, bioimaging, pathogen detection, etc. 
Li et al.135 synthesized biocompatible Mn-doped CulnSe2 QDs 
functionalized with folic acid that had a fluorescence 
performance of 31.2% in NIR-II. These QDs are found to 
gather mostly in 4T1 breast cancer tumors and can be utilized 
for NIR fluorescence imaging. Clinical diagnostics CA125, a 
very sensitive test for an ovarian tumor marker, was 
introduced with the help of CdTe QDs and 
SiO2@polydopamine core-shell nanoparticles.136 Freitas et 
al.137 demonstrated that CdSe/ZnS QDs were used to identify 
HER-2-ECD breast cancer cells´ biomarkers (CA15-3) while 
CdSe/ZnS QDs associated with antibodies to trace the 
presence of breast cancer cells.138 Protein measurements, 
protein interaction monitoring, and enzyme activity assays 
have all taken advantage of the conformational shift resulting 
from FRET. Forester resonance energy-transfer method was 
used to modify CdSe/CdS/ZnS QDs and antibodies markered 
with terbium to create a sensor that can detect adenosine 
diphosphate.139 In bacterial cells and model membranes, 
CdSe and ZnSe together with a ZnS Shell appeared 
membrane disturbance activity.140 CulnS/ZnS QDs with 
infrared emission were developed by Lv et al.141 for tumor 
phototherapy. These QDs effectively obtained bimodal tumor 
treatment using PDT and PTT. Under 660 nm laser 
irradiation, the tumor cells were successfully eradicated from 
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the mice by the combined actions of photothermal and 
photodynamic effects. 
 

3.6 Environmental Applications 
 
In environmental applications, metal chalcogenide QDs have 
been explored for use in environmental sensing and 
monitoring. Their high sensitivity and selectivity and fast 
response time make them useful for detecting and monitoring 
various environmental pollutants which consist of organic 
pollutants, heavy metals, as well as microbes. They may 
additionally be used for environmental remediation, such as 
removing pollutants from water or soil. Blue fluorescent WS2 
QDs have exhibited high sensitivity (KD = 1.1× 104 M-1) and 
selectivity for ferric ions142 (Fe3+) while for 2,4,6-trinitrophenol, 
melamine, and Cu2+, surface-functionalized MoSe2 QDs 
worked as chemosensors.143 It has been demonstrated by our 
group that starch-capped CdSe QDs functionalized with 
thiourea were used to sense heavy metal ions in aqueous 
solutions8. The metal ions Cu2+, Hg2+, and Cr6+ particularly 
quenched the PL intensity of CdSe QDs. Resulting, Cu2+ ions 
show lower limit of detection (LOD) (27.6 µM) than both Hg2+ 
(196 µM) and Cr6+ (279.2 µM) ions.  Wei et al.144 
demonstrated that QDs could detect the Cd2+ ions by 
increasing the fluorescence intensity through aggregation-
induced emission, using Zn-Ag-ln-S (ZAIS) QDs capped with 
L- cysteine. CdSe gel gas sensors fabricated using an 
electrogelation method have shown exceptional performance 
for NO2 gas sensing at room temperature, which is crucial for 
air quality monitoring.145  
Using metal chalcogenide QDs in a variety of applications 
can have serious environmental consequences. Toxic metals 
such as cadmium and lead may be released during 
manufacture and disposal, posing dangers to soil and water 
systems. Furthermore, the synthesis methods frequently 
produce toxic byproducts. Proper waste management and the 
development of less harmful alternatives are critical for 
mitigating these environmental concerns. 
 

Toxic gases can be harmful to ecosystems and human 
health, making their presence in the environment a major 
global problem. Anthropogenic sources such as power plants, 
manufactures, or smoke are the major source for hazardous 
gases (such as NH3, COx, H2S, SOx, and NOx that have been 
released into the atmosphere. Human senses are unable to 
identify several of the hazardous gases at low amounts, and 
some of the gases have no smell at all.146 Geng et al.147 
developed a feasible approach for detecting NO2 gas at room 
temperature employing a PbSe QD gel substrate. Firstly, 
CdSe QD gels were created and then converted into PbSe 
QD gels via a cation exchange method. The gas sensing was 
conducted under various LED light irradiation conditions, with 
the greatest findings achieved under violet light illumination. 
The sensor responded linearly to NO2 concentrations ranging 
from 0.003 to 1.32 ppm, with a low LOD of 3 ppb and 
excellent response/recovery times (27 and 102 s). The 
scientists employed heavy metal QDs to create a NO2 sensor 
with a lower LOD at room temperature. Under UV irradiation 
at 40 °C, the ZnO/SnO2 composite (SZQ1%) with a molar 
ratio of 1:100 demonstrates outstanding NO2 gas detecting 
characteristics with a LOD of 100 ppb.148 Lin et al.149 created 
a flexible and portable NO2 sensor by modifying nylon fibres 
with ZnO QDs and reducing graphene oxide (rGO. The 
sensor has a linear response from 20 to 100 ppm and a LOD 
of 20 ppm at 25°C. The sensor performed well with response 
and recovery times of about 216 seconds and 668 seconds, 
respectively. The scientists incorporated the portable fibre 
sensor with an electrical module to create an over-limit 
monitoring system for NO2 values above 20 ppm.  Liu et al.150 
created CuSbS2 QDs/rGO composites via hot injection to 
make gas sensors. The composites showed high NH3 
detection ability at room temperature (23 oC) and a low LOD 
of 500 ppb. Furthermore, the sensor demonstrated excellent 

selectivity and rapid response/recovery times of 50/115 s. To 
detect NH3 gas, Sharma et al.151 developed two-dimensional 
(2D) tungsten disulpide (WS2) nanosheets coated by tin oxide 
(SnO2) QDs. Low NH3 concentrations resulted in a low LOD 

(10 ppb) and high sensitivity (175% ppm-1) due to the 
improved response. When analyzed to WS2 QD as CO2 gas 
sensor, the Ru@WS2 QD exhibits fewer impacts under 
various humid circumstances.152 
 
3.7 Quantum Computing 
Quantum computing has a wide area of uses and has 
numerous future benefits including drug design & 
development, computational chemistry, cleaner fertilization, 
electronic materials discovery, solar capture, better batteries, 
cybersecurity & cryptography, financial modeling, artificial 
intelligence& machine learning. QDs are a possible method 
for quantum computing that has gained traction as potential 
building blocks for solid-state quantum devices in recent 
years. QDs provide a platform for investigating several ways 
of approaching quantum computation, such as information 
storage, quantum gate operations, and qubit implementation. 
QD technology is demonstrating potential in solid-state 
quantum computation and offers avenues for implementation 
in quantum information processing (figure 13).153 
 

 
Fig. 13: Flow chart illustrating the role of QDs in quantum computing.  

 
To further the capabilities of quantum computing, researchers 
are currently actively investigating and creating QD-based 
technologies. Nonetheless, there are a few obstacles to be 
addressed, like qubit interactions and manufacturing flaws, 
which restrict the use of QDs in the realm of quantum 
computing. The key to overcoming qubit interactions is 
regulated interactions between adjacent qubits. Even with 
these great advancements, there is still much work to be 
done to produce reliable and strong qubit interactions. Errors 
and noise can enter the system as a result of fabrication 
flaws, which can result in misleading calculations. Therefore, 
to simplify the scaling-up of QDs in the realm of quantum 
technologies, a precise controlled synthesis methodology is 
essential. Systems encoded within QDs have fewer internal 
degrees of freedom and are more effectively isolated from the 
outside world than systems with higher dimensions. There is 
growing interest in the possible uses of QDs for solid-state 
quantum computing because of these two properties, which 
are help extend the coherence periods of the qubit states 
contained within the dot.154 
 
3.8 Neuromorphic/Memory 
QDs have a wide band gap and high electron mobility. This 
enables them beneficial for advanced electronic devices like 
floating gate memory systems and neuromorphic hardware 
devices. Semiconductor QDs are a popular choice for 
photonic applications due to their compatibility with 
(Complementary Metal-Oxide-Semiconductor) CMOS-based 
processing methods. These devices offer great optical 
absorption, structural stability, and cost-effective production 
for vast area coverage. The density of states, band gap, 
material properties also surface effects (nature of the capping 
agent) govern the electronic properties of QDs that are very 
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significant for photonic applications and affect their 
performance in electronic devices. A rapid way to recover the 
performance was achieved by Jeong et al.155 of CdSe QD 
floating gates utilizing low-intensity light. The concept of using 
QDs as the active element in memristors has become more 
and more favored in recent times due to its advantages, 
which include high quality, the ability to integrate with 
electronic devices, and low power consumption. Wu et al.156 
determined a ZnO/CsPbBr3 QDs-based memristor with a low 
operating voltage (1V) and a high ON/OFF ratio (>105). 
Spintronics also has garnered a great deal of interest recently 
as a potential field for next-generation electronics due to its 
ability to reduce energy consumption and increase 
performance in classic electronics. It is utilizing the electron's 
spin state in QDs to create new electrical devices.  
Researchers are investigating metal chalcogenides due to 
their potential for energy-efficient neuromorphic computing. 
Neuromorphic computing aims to mimic the brain’s 
computational abilities, emphasizing low power consumption 
and parallel processing. In terms of energy consumption, the 
human brain is about 106 times more efficient than typical 
CMOS logic. Low–range stimuli can trigger short-range 
mechanisms like structural phase shifts and coupled electron 
systems. These materials have the potential to create 
effective synaptic devices and memristors in neuromorphic 
systems.157 Neuromorphic memristors derived from 2D TMCs 
hold great potential in brain-inspired computing and high-
performance AI.158 Using 2D materials in vertical memristors 
allows for scaling to thicknesses of 10 nm or even less, 
resulting in reduced operating voltage and great integration 
density. This is advantageous for less power applications159. 
Xu et al.160 discussed advancements in neuromorphic optical 
and electronic devices, aiming to imitate the human brain to 
improve efficient energy use and data processing 
performance. Brain-like chips and in-memory computing 
systems benefit from PCM-based devices. The all-around 
benefits of QDs for memory applications include regulated 
sizes with flexible changes, emission properties, high optical 
stability, and tunable absorption. These benefits allow the 
memory architecture to have desirable features like 
uniformity, scalability, photoswitching, and flexibility.161  
 
4. Challenges & Future’s Perspective 
 Metal chalcogenides have various applications due to their 
interesting properties. However, they also face several 
challenges in different fields. Many metal chalcogenides, 
particularly those containing selenium and tellurium, can 
become unstable when exposed to light, heat, and moisture 
over a sustained period, resulting in decreased performance. 
QD surface imperfections can trap charge carriers, resulting 
in non-emissive recombination. These defects can affect the 
efficiency of QDs in photovoltaics and LEDs.Some 
chalcogenides, including those containing cadmium (e.g., 
CdTe), are hazardous, raising environmental and health 
problems. Cadmium-based QDs can induce apoptosis, 
altered gene expression, neurotoxicity, and mitochondrial 
damage. This hinders their applicability in biological and 
clinical imaging. To overcome this problem, scientists are 
investigating alternate materials and formation processes to 
create non-toxic QDs with preferred qualities. Inefficient Na⁺ 
diffusion in chalcogenides can affect battery performance and 
Low electrical conductivity reduces rate capabilities. Ensuring 
the biocompatibility of QDs in biomedical applications is a 
significant challenge. QDs can release harmful ions in a 
biological environment, which is a major problem. Metal 
chalcogenide QDs are difficult to synthesize and require 
specialized equipment, limiting their applicability in many 
applications. Large-scale production of QDs involves issues 
such as maintaining consistent size and shape, efficiently 
scaling up synthesis methods, assuring purity and stability, 
and controlling environmental and safety concerns related to 
toxicity. 

The major ongoing research on the chalcogenide QDs is in 
the biomedical application which aims to explore a greener 
and more scalable technique for the formation of these QDs. 
The future perspective of research and development also 
aims to replace the heavy and toxic metal ions with 
biocompatible metals like Zn, and Cu. The other challenge is 
to have precise control over shape, sizes and sizes, hence 
enhanced quantum yield and the other properties of these 
QDs. Overall, the future of research and development of 
chalcogenide QDs looks very promising and bright. The 
prospect of the use of QDs lies in the extensive work in the 
field of quantum computing, single photon emitters, and in 
spintronics, artificial intelligence. Integration of chalcogenide 
QDs with the perovskite QDs is also very interesting and 
challenging for improved photovoltaic performance.  
 

5. Conclusion  
Recent advances in chalcogenide QDs for practical 
applications consist of the creation of cadmium-free QDs, 
non-toxic, like those based on indium phosphide, which 
improve their environmental and health safety. Improved 
synthesis processes have allowed for greater control over 
size and shape, resulting in more consistent and efficient 
performance. Surface passivation processes have also been 
developed to improve stability and reduce deterioration. 
These improvements have increased the utilization of QDs in 
applications such as display technology, solar cells, and 
bioimaging, making them more commercially viable. In 
conclusion, Metal chalcogenide QDs offer a promising 
platform for various applications due to their distinctive 
physical and chemical features. The creation of metal 
chalcogenide QDs has advanced significantly over the years. 
Various approaches have been developed to achieve detailed 
control over the size, shape, and composition of these 
nanomaterials. Further, it is vital to improve the synthesis 
methods by exploring new precursors, solvents, and reaction 
conditions. This will allow for better control over QDs size 
distribution and surface passivation. These QDs have been 
widely studied for their potential applications in optoelectronic 
devices, solar cells, photocatalysis, and bioimaging due to 
their attractive properties that is high energy emission, and 
excellent photostability, and high quantum yield. The use of 
QDs in a variety of sectors has produced encouraging 
outcomes and created new opportunities for research and 
development. However, challenges including reproducibility, 
toxicity and stability require to be tackled for practical 
applications of metal chalcogenide QDs. Efforts are being 
made to develop eco-friendly synthesis techniques and 
surface modification ways to improve their biocompatibility 
and stability. Further investigation is required to explore the 
capability of metal chalcogenide QDs in emerging fields such 
as quantum computing and biomedical applications. Overall 
QDs are a fascinating area of research. Continued study and 
development in this area will certainly lead to exciting new 
advances in various technological fields. 
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