The Significance of Air Pollution in the Process of Stone Deterioration Environmental Science

Main Article Content

Tanvir Arfin
Abhishek Singh
Nikhila Mathew
Abha Tirpude

Abstract

Stone materials used in monuments, structures, and sculptures are highly vulnerable to the effects of air pollution. Sulphur and nitrogen oxides are among the most harmful pollutants, especially for carbonate stones. When these oxides come into contact with atmospheric moisture, they form acids that gradually corrode the surface of the stone, weakening its structural integrity. These acids may also react with solid particles in the air, such as heavy metals and salts, to create black crusts that blemish the original appearance of the stone. These crusts not only compromise the structural stability of the stone but also pose a significant threat to the preservation of important monuments and buildings. Our research shows that stone structures exposed to air pollution for extended periods can provide valuable insight into historical pollution levels through their weathering crusts. These findings offer important insights for improving long-term geochemical records and restoring past air quality conditions. Additionally, this methodology can enhance the study and preservation of stone weathering while enabling more accurate reconstructions of historical pollutant levels.  

Article Details

How to Cite
The Significance of Air Pollution in the Process of Stone Deterioration: Environmental Science. (2024). Innovation of Chemistry & Materials for Sustainability, 1(1), 66-75. https://doi.org/10.63654/icms.2024.01066
Section
Review Article
Author Biographies

Tanvir Arfin, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur-440020, India

Tanvir Arfin, with BSc and MSc in physical chemistry from Aligarh Muslim University, holds a PhD in electrochemistry from the same institution. Beginning as a lecturer at NIT Raipur, he pursued postdocs at North-West University and the University of Johannesburg. As a senior scientist at CSIR-NEERI, his expertise garnered research projects from prestigious organizations. With over 130 research articles, a patent, and contributions to esteemed publications, Arfin actively participates in conferences, specializing in composites and porous materials for water and air quality management.

Abhishek Singh, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur-440020, India

Abhishek Singh is an accomplished professional in the field of mechanical engineering with a focus on air quality management. With a background in engineering, he has dedicated their career to developing innovative solutions for air emission control. Their expertise spans the fabrication of air emission control units, including designing and implementing systems to reduce pollutants and mitigate environmental impact.

Nikhila Mathew, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur-440020, India

Nikhila Mathew, holding an M.Sc. in Analytical Chemistry since 2020, presently serves as a Project Associate at NEERI, Nagpur. With a robust background in chemical analysis, laboratory techniques, and instrumentation, she specializes in the study of air pollution. Mathew's proficiency extends to data analysis and crafting comprehensive reports, which play a pivotal role in advancing her field. Through her diligent research and practical applications, she strives to deepen insights and offer solutions within the realm of analytical chemistry.

Abha Tirpude, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur-440020, India

Abha Tirpude earned her M.Sc. in Chemistry in 2020 and is currently a Project Associate at NEERI, Nagpur. Her professional expertise encompasses chemical analysis, laboratory work, and instrumentation with a focus on air pollution. Tirpude is skilled in data analysis and report writing, contributing significantly to her field through meticulous research and practical applications. Her work aims to enhance understanding and solutions in environmental chemistry.

How to Cite

The Significance of Air Pollution in the Process of Stone Deterioration: Environmental Science. (2024). Innovation of Chemistry & Materials for Sustainability, 1(1), 66-75. https://doi.org/10.63654/icms.2024.01066

References

S. A. Mandavgane, S. Rayulu, A. A. Chilkalwar, S. M. Anjankar, A. A. Moinuddin, T. Arfin, A. A. Mandavgane. Kinetics and thermodynamics studies of photocatalytic hydrogen generation by Au/Pt/TiO2. Rasayan. J. Chem. 2023, 16, 2239. http://dx.doi.org/10.31788/RJC.2023.1648617

P. K. Obulapuram, T. Arfin, F. Mohammad, K. Kumari, S. K Khiste, H. A. Al-Lohedan, M. Chavali. Surface- enhanced biocompatibility and adsorption capacity of a zirconium phosphate- coated polyaniline composite. ACS Omega 2021, 6, 33614. https://doi.org/10.1021/acsomega.1c04490

P. K. Obulapuram, T. Arfin, F. Mohammad, S. K Khiste, M. Chavali, A. N Albalawi, H. A. Al-Lohedan. Adsorption, equilibrium isotherm, and thermodynamic studies towards the removal of reactive orange 16 dye using Cu(1)-polyaniline composite. Polymers 2021, 13, 3490. https://doi.org/10.3390/polym13203490

T. Arfin, D. A. Bhaisare, S. S. Waghmare. Development of a PANI/Fe (NO3)2 nanomaterial for reactive orange 16 (RO16) dye removal. Anal. Methods 2021, 13, 5309. http://dx.doi.org/10.1039/D1AY01402A

T. Arfin, K. Sonawane, A. Tarannum. Review on detection of phenol in water. Adv. Mater. Lett. 2019, 10, 753. http://dx.doi.org/10.5185/amlett.2019.0036

F. Mohammad, T. Arfin, H. A. Al-Lohedan. Biocompatible polyactic acid-reinforced nickel-arsenate composite: studies of electrochemical conductivity, mechanical stability, and cell viability. Mater. Sci. Eng. C 2019, 102, 142. https://doi.org/10.1016/j.msec.2019.04.046

F. Mohammad, T. Arfin, H. A. Al-Lohedan. Enhanced biosorption and electrochemical performance of sugarcane bagasse derived a polylactic acid-graphene oxide-CeO2 composite. Mater. Chem. Phys. 2019, 229, 117. http://dx.doi.org/10.1016/j.matchemphys.2019.02.085

T. Arfin, A. Tarannum. Rapid determination of lead ions using polyaniline—zirconium (IV) iodate-based ion selective electrode. J. Environ. Chem. Eng. 2019, 7, 102811. https://doi.org/10.1016/j.jece.2018.102811

F. Mohammad, T. Arfin, H. A. Al-Lohedan. Synthesis, characterization and applications of ethyl cellulose-based polymeric calcium (II) hydrogen phosphate composite. J. Electron. Mater. 2018, 47, 2954. http://dx.doi.org/10.1007/s11664-018-6118-8

T. Arfin, S.N. Rangari. Graphene oxide-ZnO nanocomposite modified electrode for the detection of phenol. Anal. Methods 2018, 10, 347. https://doi.org/10.1039/C7AY02650A

F. Mohammad, T. Arfin, H.A. Al-Lohedan. Sustained drug release and electrochemical performance of ethyl cellulose-magnesium hydrogen phosphate composite. Mater. Sci. Eng. C 2017, 71, 735. https://doi.org/10.1016/j.msec.2016.10.062

F. Mohammad, T. Arfin, H. A. Al-Lohedan. Enhanced biological activity and biosorption performance of trimethyl chitosan-loaded cerium oxide particles. J. Ind. Eng. Chem. 2017, 45, 33. http://dx.doi.org/10.1016/j.jiec.2016.08.029

N. Malik, A. U. Khan, S. Naqvi, T. Arfin. Ultrasonic investigation of α-amino acids with aqueous solution of urea at different temperatures: A physicochemical study. J. Appl. Sol. Chem. Model. 2016, 5, 168. http://dx.doi.org/10.6000/1929-5030.2016.05.04.2

N. Malik, A. U. Khan, S. Naqvi, T. Arfin. Ultrasonic studies of different saccharides in α-amino acids at various temperatures and concentrations. J. Mol. Liq. 2016, 221, 12. http://dx.doi.org/10.1016/j.molliq.2016.05.061

T. Arfin, F. Mohammad. Electrochemical, Antimicrobial and Anticancer Effect of Ethyl Cellulose-Nickel (II) Hydrogen Phosphate. Innov. Corros. Mater. Sci. 2016, 6, 10. http://dx.doi.org/10.2174/2352094906999160307182012

R. Bushra, T. Arfin, M. Oves, W. Raza, F. Mohammad, M. A. Khan, A. Ahmad, A. Azam. Development of PANI/MWCNTs decorated with cobalt oxide Nanoparticles towards Multiple Application sites of Electrochemical, Photocatalytic and Biotechnology. New J. Chem. 2016, 40, 9448. http://dx.doi.org/10.1039/C6NJ02054B

T. Arfin, R. Bushra, F. Mohammad. Electrochemical sensor for the sensitive detection of o-nitrophenol using graphene oxide-poly(ethyleneimine) dendrimer-modified glassy carbon electrode. Graphene Technol. 2016, 1, 1. https://dx.doi.org/10.1007/s41127-016-0002-1

S. S. Waghmare, D. Lataye, T. Arfin, N. Manwar, S. Rayalu, N. Labhsetwar. Adsorption behavior of eggshell modified polyalthia longifolia leaf-based alumina as a novel adsorbent for fluoride removal from drinking water. International Journal of Advance Research and Innovative Ideas in Education 2015, 1, 904.

T. Arfin, Md. O. Aquatar, S. S. Waghmare.Mitigation strategies to greenhouse gas emission control: a database for emission factors. Int. J. Sci. Res. Dev. 2015, 3, 908.

R. V. Kalbandhe, S. S. Deshmukh, S. S. Waghmare, T. Arfin. Fabrication and performance analysis of downdraft biomass gasifier using sugarcane industry waste. Int. J. Sci. Res. Dev. 2015, 3, 903.

S. S. Waghmare, T. Arfin, S. Rayalu, D. H. Lataye, S. Dubey, S. Tiwari. Adsorption behavior of modified zeolite as novel adsorbents for fluoride removal from drinking water: surface phenomena, kinetics and thermodynamics studies. International Journal of Science, Engineering and Technology Research 2015, 4, 4114.

S. S. Waghmare, D. H. Lataye, T. Arfin, S. Rayalu. Defluoridation by nano-materials, building materials and other miscellaneous materials: A systematic review. Int. J. Innov. Res. Sci. Eng. Technol. 2015, 4, 11998. http://dx.doi.org/10.15680/IJIRSET.2015.0412046

T. Arfin, F. Mohammad. Electrical conductivity, mechanical stability, antibacterial and anticancer activities of ethyl cellulose-tin (II) hydrogen phosphate. Adv. Mater. Lett. 2015, 6, 1058. http://dx.doi.org/10.5185/amlett.2015.5896

S. S. Waghmare, T. Arfin. Fluoride removal by clays, geomaterials, minerals, low-cost materials and zeolites by adsorption: A Review. International Journal of Science, Engineering and Technology Research 2015, 4, 3663.

S. S. Waghmare, T. Arfin. Defluoridation by adsorption with chitin-chitosan-alginate-polymers-cellulose-resins-algae and fungi-A Review. Int. Res. J. Eng. Technol. 2015, 2, 1179.

S. S. Waghmare, T. Arfin. Fluoride removal by industrial, agricultural and biomass wastes as adsorbents: Review. International Journal of Advance Research and innovative Ideas in Education 2015, 1, 628.

S. S. Waghmare, T. Arfin. Fluoride removal from water by carbonaceous materials: Review. Int. J. Mod. Trends Eng. Res. 2015, 2, 355.

R. K. Morchhale, S. S. Waghmare, T. Arfin. Assessing Quality in Machine Foundation Using UPV Measurements. Int. J. Innov. Res. Sci. Eng. Technol. 2015, 4, 8081. http://dx.doi.org/10.15680/IJIRSET.2015.0409012

S. S. Waghmare, T. Arfin. Fluoride removal from water by aluminium-based adsorption: A Review. J. Biol Chem. Chron. 2015, 1, 1.

S. S. Waghmare, T. Arfin. Fluoride induced water pollution issue and its health efficacy in India- A review. Int. J. Eng. Res. Gen. Sci. 2015, 3, 345.

S. S. Waghmare, T. Arfin. Fluoride removal from water by various techniques: Review. Int. J. Innov. Sci. Eng. Technol. 2015, 2, 560.

S. S. Waghmare, T. Arfin. Fluoride removal from water by calcium materials: A state-of-the-art Review. Int. J. Innov. Res. Sci. Eng. Technol. 2015, 4, 8090.

S. S. Waghmare, T. Arfin. Fluoride removal from water by mixed metal oxide adsorbent materials: A state-of-the-art review. Int. J. Eng. Sci. Res. Technol. 2015, 4, 519.

L. K. Thakur, Y.M. Sonkhaskar, S. S. Waghmare, N. S. Duryodhan, T. Arfin. Fabrication and Performance Analysis of a biomass cook Stove. Int. J. Sci. Res. Dev. 2015, 3, 440.

S. S. Waghmare, T. Arfin, N. Manwar, D. H. Lataye, N. Labhsetwar, S. Rayalu. Preparation and characterization of Polyalthia longifolia based adsorbent for removing fluoride from drinking water. Asian J. Adv. Basic Sci. 2015, 4, 12.

D. C. Onwudiwe, T. Arfin, Christien A. Strydom. Surfactant mediated synthesis of ZnO nanospheres at elevated temperature, and their dielectric properties. Superlattices Microstruct. 2015, 81, 215. http://dx.doi.org/10.1016/j.spmi.2015.02.003

F. Mohammad, T. Arfin. Thermodynamics and electrochemical characterization of core-shell type gold-coated superparamagnetic iron oxide nanoparticles. Adv. Mater. Lett. 2014, 5, 315. http://dx.doi.org/10.5185/amlett.2014.amwc.1030

D. C. Onwudiwe, T. Arfin, C. A. Strydom. Fe(II) and Fe(III) complexes of N-ethyl-N-phenyl dithiocarbamate: Electrical conductivity studies and thermal properties. Electrochim. Acta 2014, 127, 283. http://dx.doi.org/10.1016/j.electacta.2014.02.034

D. C. Onwudiwe, T. Arfin, Christien A. Strydom. Synthesis, characterization, and dielectric properties ofN-butyl aniline capped CdS nanoparticles. Electrochim. Acta 2014, 116, 217. http://dx.doi.org/10.1016/j.electacta.2013.11.046

T. Arfin, F. Mohammad. Electrochemical, dielectric behavior and in vitro antimicrobial activity of polystyrene-calcium phosphate. Adv. Ind. Eng. Manag. 2014, 3, 25. http://dx.doi.org/10.7508/AIEM-V3-N3-25-38

T. Arfin, C. Kumar. Synthesis, characterization, conductivity and antibacterial activity of ethyl cellulose manganese (II) hydrogen phosphate. Anal. Bioanal. Electrochem. 2014, 6, 403.

T. Arfin, S. Fatma. Synthesis, influence of electrolyte solutions on impedance properties and in-vitro antibacterial studies of organic-inorganic composite membrane. Adv. Ind. Eng. Manag. 2014, 3, 19. http://dx.doi.org/10.7508/AIEM-V3-N2-19-32

T. Arfin, S. Fatima. Conductometric Studies with Polystyrene Calcium Phosphate Membrane. Asian J. Adv. Basic Sci. 2013, 2, 1.

T. Arfin, F. Mohammad, DC electrical conductivity of nano-composite polystyrene-titanium-arsenate membrane. J. Ind. Eng. Chem. 2013, 19, 2046. http://dx.doi.org/10.1016/j.jiec.2013.03.019

F. Mohammad, T. Arfin. Cytotoxic effects of polystyrene-titanium-arsenate composite in cultured H9c2 cardiomyoblasts. Bull. Environ. Contam. Toxicol. 2013, 91, 689. http://dx.doi.org/10.1007/s00128-013-1131-3

S. Ahmad, R. Singh, T. Arfin, K. Neeti. Fluoride contamination, consequences and removal techniques in water: a review. Environ. Sci. Adv. 2022, 1, 620. https://doi.org/10.1039/D1VA00039J

N. Mathew, A. Somanathan, A. Tirpude, T. Arfin. The impact of short-lived climate pollutants on the human health. Environ. Pollut. Manag. 2024, 1, 1. http://dx.doi.org/10.1016/j.epm.2024.04.001

T. Arfin, A.M. Pillai, N. Mathew, A. Tirpude, R. Bang, P. Mondal. An overview of atmospheric aerosol and their effects on human health. Environ. Sci. Pollut. Res. 2023, 30, 125347. https://doi.org/10.1007/s11356-023-29652-w

T. Arfin, P. Kate, A. Singh, K. Kumari. Persistent Organic Pollutants, CRC Press, 2021, Alternatives to POPs for a healthy life, p. 201-226.

K. Kumari, T. Arfin. Pollutants of Global Concern. Emerging Contaminants and Associated Technologies, Springer, 2024, Hexabromobiphenyl (HBB), p.195-204. https://doi.org/10.1007/978-3-031-50996-4_14

T. Arfin, N. Mathew, A. Tirpude, A. M. Pillai, P. Mondal. Bioremediation Technologies: For Wastewater and Sustainable Circular bioeconomy, Walter de Gruyter GmbH, 2023, Emerging Contaminants in air Pollution and their Sources, Consequences, and future, p. 235-274. https://doi.org/10.1515/9783111016825-014

M. Pillai, T. Arfin. Electrocatalytic Materials for Renewable Energy, John Wiley, 2024, Environmental Electrocatalysis for Air Pollution Applications, p. 303-331. https://doi.org/10.1002/9781119901310.ch11

A. Somanathan, N. Mathew, A. M. Pillai, T. Arfin. Handbook of Nanofillers, Springer Nature, 2024, Policy, Regulations, and safety of Nanofillers in Environment, p. 1-40. https://doi.org/10.1007/978-981-99-3516-1_155-1

M. F. La Russa, S. A. Ruffolo. Mortars and plasters—How to characterize mortar and plaster degradation. Archaeol. Anthropol. Sci. 2021, 13, 165. https://doi.org/10.1007/s12520-021-01405-1

E. Charola, J. Pühringer, M. Steiger. Gypsum: a review of its role in the deterioration of building materials. Environ. Geol. 2007, 52, 339. https://doi.org/10.1007/s00254-006-0566-9

C. Sabbioni, The effects of air pollution on the built environment, Imperial College Press, 2003, Mechanism of air pollution damage to stone. p.63-106.

G. M. Martinez, E. N. Martinez. Characterization of stone from the metropolitan cathedral and from the façade of the National Museum at Tepotzotlan, Mexicoo. Studies in conservation 1991, 36, 99. https://doi.org/10.1179/sic.1991.36.2.99

P. Brimblecombe. The effects of air pollution on the built environment. Vol.2, Imperial College Press, 2003, p. 1-428.

R. M. Esbert, F. Diaz-Pache, F. J. Alonso, J. Ordaz, G. C. Wood. Proceedings of the 8th international congress on deterioration and conservation of stone, Möller, 1996, Solid particles of atmospheric pollution found on the Hontoria Limestone of Burgos Cathedral (spain)1, p. 393–399. https://doi.org/10.1007/s12665-012-2161-6

C. Sabbioni. Contribution of atmospheric deposition to the formation of damage layers. Sci. Total Environ. 1995, 167, 49. https://doi.org/10.1016/0048-9697(95)04568-L

Rodriguez-Navarro, E. Sebastian. Role of particulate matter from vehicle exhaust on porous building stones (limestone) sulfation. Sci Total Environ. 1996, 187, 79. https://doi.org/10.1016/0048-9697(96)05124-8

P. Ausset, F. Bannery, R. A. Lefèvre. 7th International congress on deterioration and conservation of stone, Lab. Nat. engenharia Civil, 1992, Black-crust and air microparticles contents at Saint-Trophime, Arles, p. 325–334. https://doi.org/10.1007/s12665-012-2161-6

R. P. J. Hees, L. Binda, I. Papayianni, E. Toumbakari. Characterisation and damage analysis of old mortars. Mater. Struct. 2004, 37, 644. https://doi.org/10.1007/BF02483293

P. Maurenbrecher. Water-Shedding Details Improve Masonry Performance; Construction Technology Update 23; Institute for Research in Construction, National research Council: Ottawa, ON, Canada, 1998.

B. Graue, S. Siegesmund, P. Oyhantcabal, R. Naumann, T. Licha, K. Simon. The effect of air pollution on stone decay: the decay of the drachenfels trachyte in industrial, urban, and rural environments-a case study of the Cologne, Altenberg and Xanten cathedrals. Environ. Earth Sci. 2013, 69, 1095. https://doi.org/10.1007/s12665-012-2161-6

G. Knetsch. Geologie am Kölner Dom. Geol Rundsch. 1952, 40, 57. https://doi.org/10.1007/BF01803211

P. W. Mirwald, K. Kraus, A. Wolff. Durability of building materials 3/4, Elsevier, 1988, Stone deterioration on the Cathedral of Cologne. p. 549-570.

Y. Efes, H. P. Lühr. Natursteine am Bauwerk des Kölner Doms und ihre Verwitterung. Kölner Domblatt 1976, 41, 167.

von Plehwe-Leisen, H. Leisen, E. Wendler. Der Drachenfels-Trachyt—ein wichtiges Denkmalgestein des Mittelalters—Untersuchungen zur Konservierung. Z.dt.Ges. Geowis 2007, 158, 985.

A. Wolff. Dombaubericht von oktober 1991 bis September 1992: 10.1 Londorfer Basaltlava und Schlaotdorfer Sansdtein. Kolner Domblatt 1992, 57, 89.

Graue, S. Siegesmund, B. Middendorf. Quality assessment of replacement stones for the Cologne Cathedral: mineralogical and petrophysical requirements. Environ. Earth Sci. 2011, 63, 1799. https://doi.org/10.1007/s12665-011-1077-

S. Siegesmund, A. Török, A. Hüpers, C. Müller, W. Klemm. Mineralogical, geochemical and microfabric evidences of gypsum crusts: a case study from Budapest. Environ. Geol. 2007, 52, 358. https://doi.org/10.1007/s00254-006-0588-3

M. D. Monte, C. Sabbioni, O. Vittori. Airborne carbon particles and marble deterioration. Atmos. Environ.1981,15, 645. https://doi.org/10.1016/0004-6981(81)90269-9

T. S. Novakov, S. G. Chang, A. B. Harker. Sulfates as pollution particulates: Catalytic formation on carbon (soot) particles. Science 1974,186, 259. https://doi.org/10.1126/science.186.4160.259

S. G. Chang, R. Brodzinsky, R. Toossi, S. S. Markowitz, T. Novakov. Catalytic oxidation of SO2 on carbon in aqueous suspensions. Conference on Carbonaceous Particles in the Atmosphere, 1978, p. 122.

V. Fassina, M. Favaro, F. Crivellari, A. Naccari. The stone decay of monuments in relation to atmospheric environment. Ann. Di Chim. 2001, 91, 767.

The Early Keeling Curve Scripps CO2 Program. Available online: scrippsco2.ucsd.edu (accessed on 15 May 2024)

Y. B. Zeldovich. The Oxidation of Nitrogen in Combustion Explosions. Acta Physicochim. USSR, 1946, 21, 577. https://doi.org/10.3390/pr10010130

J. Wang, J. Li, J. Ye, J. Zhao, Y. Wu, J. Hu, D. Liu, D. Nie, F. Shen, X. Huang. Fast sulfate formation from oxidation of SO2 by NO2 and HONO observed in Beijing haze. Nat. Commun. 2020, 11, 2844. https://doi.org/10.1038/s41467-020-16683-x

P. Wang. China’s air pollution policies: Progress and challenges. Curr. Opin. Environ. Sci. Health 2021, 19, 100227. https://doi.org/10.1016/j.coesh.2020.100227

Particulate Matter|Air & Radiation|US EPA. US Environmental Protection Agency. Available online: http://www.epa.gov/pm/ (accessed on 14 May 2024).

G. Amoroso, V. Fassina. Stone Decay and Conservation. Atmospheric Pollution, Cleaning, Consolidation and Protection, New York, 1983, p. 474.

V. Vergès-Belmin. Illustrated Glossary on Stone Deterioration Patterns; ICOMOS: Pairs, 2008.

P. Brimblecombe. Air pollution and architecture, past, present and future. J. Archit. Conserv. 2000, 6, 30. https://doi.org/100/13556207.2000.10785268L

P. Brimblecombe. The NOAHs ARK project: The impact of future climate change on cultural heritage. The European Geosciences Union Newsletter, 2005, 12, 31. http://www.the-eggs.org/articles.php?id=70

B. Honeyborne. Weathering and decay of masonry. In Conservation of building and decorative stone, 2007, p.153-178.

C. M. Grossi, P. Brimblecombe. Effect of long-term changes in air pollution and climate on the decay and blackening of European stone buildings. Geological Society, London, Special Publications, 2007, 271, 117. https://doi.org/10.1144/GSL.SP.2007.271.01.13

L. G. Johansson, O. Lindqvist, R. E. Mangio. Corrosion of calcareous stones in humid air containing SO2 and NO2. Durability of building Materials,1988, 5, 439.

C. Davidson, W. Tang, S. Finger, V. Etyemezian, F. Struegel, S. Sherwood. Soiling patterns on a tall limestone building: changes over 60 years. Environ. Sci. Technol. 2000, 34, 560. https://doi.org/10.1021/es990520y

C. M. Grossi, P. Brimblecombe. The effect of atmospheric pollution on building materials. J. Phys. 2002, 12, 197. https://doi.org/10.1051/jp4:20020460

S. Trudgill. Environment, agriculture and conservation--Crumbling Heritage? Studies of stone weathering in polluted atmospheres by RU Cooke and GB Gibbs. J. George Sys.1994, 160-346.

V. V. Tran, D. Park, Y. C. Lee. Indoor air pollution, related human diseases, and recent trends in the control and improvement of indoor air quality. Int. J. Environ. Res. Public Health. 2020, 17, 2927. https://doi.org/10.3390/ijerph17082927

N. Schiavon. Proceedings of the 9th international congress on deterioration and conservation of stone. 2000. Science Granitic building stone decay in an urban environment: A Case of Authigenic kaolinite formation by heterogenous sulphur dioxide attack. P. 411-421. https://doi.org/10.1016/B978-044450517-0/50124-0

H. Haynie. Theoretical model of soiling of surfaces by airborne particles. Aerosols. Lewis Publ, Chelsea (MI), 1986, 951-959.

R. W. Lanting. Black smoke and soiling. aerosols, Lewis Publishers, 1986, 923-932.

P. T. Newby, T. A. Mansfield, R. S. Hamilton. Sources and economic implications of building soiling in urban areas.Sci. Total Environ. 1991, 100, 347. https://doi.org/10.1016/0048-9697(91)90385-R

H. A. Viles, A.A. Gorbushina. Soiling and microbial colonization on urban roadside limestone: a three year study in Oxford, England, 2003, 38, p. 1217-1224. https://doi.org/10.1016/S0360-1323(03)00078-7

C. M. Grossi, P. Brimblecombe. Air Pollution and cultural Heritage. 2004. The rate of darkening of material surfaces. Rotterdam, p.193-198.

S. Simon, R. Snethlage. 8th International Congress on Deterioration and Conservation of Stone. 1996. Marble weathering in Europe - Results of the Eurocare-Euromarble exposure programme 1992-1994. Berlin, p. 1996, p. 159-166.

W. F. Carey, Atmosoheric deposits in Britain-a study of dinginess. International Journal of Air Pollution, 1959, 2, 1.

R. P. Hancock, N. A. Esmen, F. P. Furber. Visual response to dustiness. J. Air Pollut. Control. Assoc. 1976, 26, 54. https://doi.org/10.1080/00022470.1976.10470221

L. M. Bellan, L. G. Salmon, R. Cass. A study on the human ability to detect soot deposition onto works of art. Environ. Sci. Technol. 2000, 34, 1946. https://doi.org/10.1021/es990769f

A. Somanathan, N. Mathew, T. Arfin. Waste-derived nanoparticles: synthesis, Applications, and sustainability, Elsevier, 2024, Environmental impacts and developments in waste-derived nanoparticles for air pollution control, p. 281-318. https://doi.org/10.1016/B978-0-443-22337-2.00018-X

T. Arfin, N. Mathew, P. Mondal, Biobased packaging materials: sustainable alternative to conventional packaging materials, Springer Nature, 2024, Life cycle analysis of biobased materials, p. 279-311. https://doi.org/10.1007/978-981-99-6050-7_11

A. Somanathan, N. Mathew, A. M. Pillai, P. Mondal, T. Arfin, Bioplastics for sustainability: manufacture, technologies, and environment, Elsevier, 2024, Bioplastics for clean environment, p. 313-354. https://doi.org/10.1016/B978-0-323-95199-9.00009-3