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Abstract: The development of sustainable smart polymers has enabled materials capable of responding to diverse chemical, biological,
and physical stimuli. This review highlights recent advances in controlled polymerization techniques-including

ATRP, RAFT, RDRP, and photoinduced methods with emphasis on environmentally benign synthesis via green
solvents and solvent-free routes. The integration of bio-based monomers, green catalysts, and circular design
principles facilitates recyclability, biodegradability, and low toxic impact. Owing to their multifunctional behavior,
these polymers exhibit significant potential in drug delivery, tissue engineering, flexible electronics, energy
storage, energy conversion, and environmental remediation. Representative examples include thermo-
responsive hydrogels, conductive polymer networks, self-healing elastomers, and adaptive separation
membranes. Key challenges such as operational stability, scalability, and lifecycle management are discussed,
underscoring the need for molecular-to-system level strategies. A holistic approach combining molecular design
and circular economy frameworks will accelerate the translation of smart polymers into sustainable, high-

performance technologies.
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1. Introduction

Nature has long inspired many technological innovations.*
Various natural materials exhibit responsive behaviors for
instance, the leaves of Mimosa pudica that fold upon touch,
chameleons that change color based on their surroundings and
the Venus flytrap that swiftly reacts to physical touch.? * These
phenomena motivate material scientists to study their
mechanisms and develop advanced biomimetic materials and
devices.!* Smart and functional polymers, which have
garnered a lot of interest in material science, are substances
that respond to external stimuli and return to its initial condition
after the stimulus is withdrawn.> Smart and functional polymers
can dynamically detect environmental changes and adjust their
physicochemical properties accordingly.® With carefully
tailored molecular designs, these polymers can respond to
various stimuli such as temperature, light, pH, and electric or
magnetic fields.”® By engineering them into different
structures, their responsive features can be efficiently and

flexibly utilized for a large range of practical applications like
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sensors,’® actuators,’* environmental remediation,*? for
controlled and triggered drug delivery,®®* and many other
applications.

The need for novel materials that combine cutting-edge
functionality with environmental sustainability has grown as
society shifts toward a circular economy that prioritizes
durability, reusability, recyclability, and biodegradability.** For
example, in agricultural and medicinal applications, hydrogels
that respond to temperature or pH and are made from natural
polymers like chitosan, alginate, and cellulose offer
environmentally benign substitutes for synthetic gels.'> Smart
and functional polymers are being used in environmental
engineering to create reusable absorbents that can remove
pollutants from water, including dyes, heavy metals, and
microplastics.'6*® Smart and functional polymers enable the
creation of components in additive manufacturing and 3D
printing that may alter their characteristics or structure over
time in response to external stimuli.?>-?? Similar to this, smart
and functional polymers allow for the development of flexible,
energy-efficient gadgets that can adapt to the human body and
react dynamically to physiological signals in wearable
electronics and  biomedical  diagnostics.?®  These
advancements highlight a clear shift in materials science
toward developing functional materials with sustainable,
stimuli-responsive frameworks.”

The creation of innovative polymerization techniques for
functional monomers is the main force behind this progress.
The creation of novel stimuli-responsive polymers (SRP) has
been made possible by recent developments in a variety of
reversible deactivation radical polymerization (RDRP)
processes.?* Various RDRP techniques such as single-
electron transfer living radical polymerization (SET-LRP),?®
atom transfer radical polymerization (ATRP),?® photo-RDRP,”
electrochemically mediated ATRP (eATRP),?” organometallic-
mediated radical polymerization (OMRP),%® reversible
addition-fragmentation chain transfer (RAFT) polymerization,?®
nitroxide-mediated polymerization (NMP),*° and iodine transfer
polymerization (ITP)3* are now widely employed to synthesize
well-defined and structurally precise (co)polymers.

In this review, we highlight the recent advancements in
smart and functional polymers, emphasizing various physical,
chemical stimuli-responsive systems and their wide-ranging
applications. After examining the basic properties that allow
these polymers to carry out dynamic and adaptive tasks, it
provides a summary of sustainable design techniques and the
most recent advancements in material production. Special
attention is given to their roles in environmental remediation,
healthcare, and energy-related applications. The integration of
such responsive polymeric materials into environmental
systems shows great promise for advancing sustainability,
intelligent, and eco-friendly technological solutions for the
future.

2. Smart and Functional Polymers

Polymers with responsive moieties exhibit reversible
changes in their physicochemical properties when exposed to
external stimuli such as pH, light, chemical factors such as
redox, ionic strength, and biological elements like enzymes
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Figure 1. Classification of SRPs. Reused with consent.3? Copyright 2025,
American Chemical Society.

(Table 1). Recent advancements have led to the creation of
multi-stimuli-responsive polymers, capable of responding to
multiple inputs simultaneously, which enhances their tunability
and adaptability for applications in tissue engineering
controlled drug delivery, and smart coatings. Within the
polymer network, these stimuli cause a variety of molecular-
level modifications, including hydrophilicity, conformation,
solubility, degradability, and even selective bond cleavage.3*3*
As a result, these reactions control the polymeric systems'
overall mechanical, structural, and functional behavior.
Physical, chemical, and biological stimuli can be broadly
categorized (Figure 1). The dynamics and chain mobility of
polymers are mostly influenced by physical stimuli. The
polymer-solvent interface as well as intramolecular and
intermolecular interactions are influenced by chemical stimuli.
On the other hand, certain biochemical processes like
enzymatic catalysis and receptor-ligand interactions are
involved in biological stimuli like enzymes or biomolecules (like
glucose).?

2.1. Thermo-Responsive Polymers

A well-known subclass of smart and functional polymers
are thermo-responsive polymers also known as temperature-
responsive polymers. Such polymers show reversible and
adjustable changes in their physicochemical characteristics in
response to temperature fluctuations. Because of this unique
behaviour, they have been thoroughly investigated for a variety
of uses, such as information processing, drug delivery,® tissue
engineering,®® catalysis,®” and surface modification.®
The careful balance between hydrophilic and hydrophobic
interactions inside the polymer chains is what causes the
temperature-induced change in these polymers. The polymer's
solubility and aggregation behaviour in a particular solvent are

Table 1. Overview of major stimuli and their molecular response mechanisms in smart polymers.

Stimulus Responsive Mechanism Typical Polymers (with Citations)

Temperature LCST/UCST transition; coil-globule collapse due to disruption of H- PNIPAM, poly(vinyl ether)s, poly(oxazoline)s.26-4067
bonding

pH Protonation/deprotonation of acidic/basic groups leading to PAA, PMAA, PDMAEMA 246869
swelling/deswelling

Light Photoisomerization (trans-cis), reversible ring opening, DASA photo- Azobenzene copolymers, spiropyran polymer, DASA block
switching copolymers,.5525470

Redox Oxidation state variation of redox groups; disulfide cleavage Ferrocene-containing polymers, TEMPO copolymers, disulfide

hydrogels.5%:5°
Electric Field Charge migration, conformational change, ion transport PPy, PANi, PEDOT:PSS.%

Chemical Analyte Reversible binding/complexation with analytes (e.g., diol, CO2)

Boronic-acid polymers, CO»-responsive amidine polymers.®%6471

https://doi.org/10.63654/icms.2025.02177

178


https://doi.org/10.63654/icms.2025.02177

Banerjee et al.

Innov. Chem. Mater. Sustain. 2025, 2(2), 177-195

determined by this equilibrium. The lower critical solution
temperature (LCST) and the wupper critical solution
temperature (UCST) are two important factors that determine
the thermo-responsive behaviour. While polymers with a
UCST show the opposite solubility tendency, those with an
LCST are soluble below the transition temperature and
insoluble above it.?*

The breaking of hydrogen bonding connections between
the polymer chains and surrounding solvent molecules as the
temperature rises is the primary cause of the transition in
LCST-type polymers. Phase separation, chain collapse, and
an overall rise in hydrophobicity result from this. The process
is reversible and controlled by thermodynamic principles; when
the temperature rises, the Gibbs free energy of mixing (AG =
AH — TAS) changes from negative to positive. Poly(N-
isopropylacrylamide) (PNIPAM),%° polyvinylethers,*°
polyoxazolines,*' are few examples of LCST-type polymers.
They are flexible prospects for next-generation smart and
functional polymers.?*

2.2. Electro-Responsive Polymers

Electro-responsive polymers represent a broad class of
electroactive polymers (EAPs) whose mechanical, optical, or
electrical properties change in response to an applied electric
field.“2 In the literature, the term EAP is sometimes used
interchangeably with electrically conductive polymers;
however, EAPs are not limited to conductive polymer systems.
Instead, they encompass two fundamental categories that
operate through distinct mechanisms:
(1) Electronic Electroactive Polymers (EEAPs) and
(2) lonic Electroactive Polymers (IEAPS).

EEAPs are materials in which actuation is driven by electronic
processes such as dipole orientation, dielectric polarization, or
electrostriction under an applied electric field.** Typical
examples include dielectric elastomers, ferroelectric polymers,
and piezoelectric fluoropolymers, which exhibit large reversible
deformation without involving ion transport. EEAPs are
generally high-performance elastomeric systems with fast
response times and low energy consumption.

In contrast, |IEAPs rely on ion migration and
electrochemical reactions to generate deformation.
Representative IEAPSs include ionic polymer-metal composites
(IPMCs), conducting polymer actuators based on poly(aniline)
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Figure 2. Few SRP and various stimuli responsive functionalities. Reused
with consent.*® Copyright 2025, Wiley-VCH GmbH.

or poly(pyrrole), and ionic hydrogel systems, where solvent
and ion movement across the polymer matrix produce bending
or swelling under low operating voltage.** IEAPs offer high
bending strain and operate in aqueous environments, making
them useful for soft robotics and bio-interfacing.

2.3. Photo-Responsive Polymers

Light-responsive polymers, or photo-responsive polymers,
change their physicochemical properties when exposed to
light, making them essential in drug delivery, environmental
sensing, and smart materials.?* Their ability to transform
structurally and behaviorally is controlled by the light's
irradiation time, intensity, and wavelength, allowing for
reversible and localized activation. Additionally, the formation
or breakage of crosslinking bonds plays a major role in
governing these stimulus-responsive activities. Key methods in
developing these  polymers include  photoinduced
isomerization and photochromism,*” with examples such as
spiropyran,*® azobenzene,*® and spirooxazine (Figure 2).5°
These photoactive moieties enable significant macroscopic
changes in shape, solubility, wettability, and mechanical
properties through their modulation of molecular conformation
and polarity in response to light.

The field of photo-responsive polymers has seen significant
advancements, particularly with donor-acceptor Stenhouse
adducts (DASAs), which act as visible light-responsive
molecular photoswitches. DASAs can reversibly switch
between a coloured open triene and a colourless closed
cyclized form when exposed to visible light.5* .Their
incorporation into polymers is influenced by factors such as the
polymer matrix's properties. These light-responsive systems
are particularly promising for biomedical and soft-robotic
applications due to their low phototoxicity and effective tissue
penetration.5? Research attempts to improve DASAs' chemicall
stability and responsiveness despite obstacles like
photostability and switching kinetics, positioning them as
essential elements in the creation of smart and functional
polymers for a range of uses, such as optical data storage and
targeted drug delivery (Figure 3).

2.4. pH-Responsive Polymers

A significant subclass of smart materials known as pH-
responsive (or pH-sensitive) polymers can reversibly modify
their physicochemical characteristics in response to variations
in the pH of their surroundings, including solubility,
conformation, swelling behaviour, and surface charge.>® Due
to its numerous uses in tissue engineering, regulated
medication delivery,3* environmental sensing, and biosensing
systems, these polymers have attracted a lot of attention.5®

The ionization or protonation-deprotonation of acidic or
basic functional groups inside the polymer backbone or side
chains is the main mechanism underlying pH responsiveness.
Changes in pH cause the charge distribution to change, which
causes electrostatic attraction or repulsion between polymer
chains and, as a result, volume changes like swelling or
shrinking. For example, at higher pH levels, the weak polyacid,
poly(acrylic acid) (PAA) deprotonates, producing negatively
charged carboxylate groups that resist one another and cause
the polymer to swell.5 On the other hand, the weak polybase
poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) is
protonated in acidic environments, which causes chain
contraction because of charge neutralization and
intermolecular interactions.%’

Their usage in cutting-edge biomedical and environmental
technologies has been made possible by recent advancements
in copolymer design and nanostructuring, which have further
improved their sensitivity, mechanical strength, and
biocompatibility.5®
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Figure 3. Chemical structures of various carbon acid acceptors and secondary amine donors that were previously used in the synthesis of DASA. Reused with

permission.5! Available under a CC-BY license. Copyright 2023 Clerc et al.
2.5. Redox-Responsive Polymers

In inorganic and coordination chemistry involving transition
metal complexes, redox stimulation is an electrochemical
process that modifies the oxidation state of redox-active
groups in materials. Redox-responsive polymers, which
incorporate redox-active moieties into their structures and
enable reversible changes in their physicochemical properties,
are the result of this process. Tetramethylpiperidine-1-oxyl
(TEMPO) is famous for its redox reversibility and paramagnetic
characteristics,% while other redox-sensitive groups, such as
dithienylethene,®® ferrocene, and disulphide units,5 enable
reversible switching in the polymer network. Because of these
characteristics, redox-responsive polymers can be used in
energy storage, catalysis, sensing, and stimuli-responsive
materials applications where dynamic control of charge and
molecular conformation is crucial.>®

2.6. Chemo-Responsive Polymers

Chemo-responsive polymers, also known as chemical-
responsive smart and functional polymers, reversibly change
their chemical or physical properties in response to specific
chemical stimuli. The nature and concentration of the
interacting species determine these changes, which allow for
dynamic adaptation for biosensing, medication administration,
and environmental monitoring. Functional groups with
chemical sensitivity can be added to provide chemo-
responsive behaviour. For instance, because of their pH-
dependent reversible transition between hydrophobic (neutral)
and hydrophilic (anionic) states, boronic acid-functionalized
polymers are diol-sensitive and frequently utilized in glucose
detection.626%  Similarly, when exposed to CO,;, CO,-
responsive polymers with amidine or tertiary amine groups
create reversible amidinium complexes that can be broken
down by inert gases.®* The design of sustainable and gas-
responsive smart and functional polymers is based on this
adjustable reversibility.

2.7. Magnetic-Responsive Polymer Composite

Magnetic-responsive polymer composites are hybrid
materials combining magnetic nanoparticles with polymer
matrices, enabling remote and non-invasive control under
magnetic  fields.®®>  Superparamagnetic ~ iron  oxide
nanoparticles (FezO4, v -Fe203) are commonly used for their
strong magnetic response and stability, while metallic cobalt,
nickel, or ferrites provide tunable magnetic and mechanical
properties. These polymer composites can undergo controlled
deformations like stretching, bending, rotation, or translation,
and be guided to specific locations, making them valuable in
drug delivery, cell manipulation, and theranostics.55¢¢ Coupled
with thermoresponsive polymers, magnetic induction can
locally heat the matrix, triggering phase transitions for on-
demand drug release or shape-memory actuation, enabling
precise spatiotemporal control for biomedical and soft robotic
applications.®®
A clear understanding of these stimuli responsive principles
lays the foundation for designing materials whose behaviour
can be precisely tuned for targeted applications.

3. Synthesis Methods
Responsive Polymers (SRPs)

for Stimuli-

To translate these responsive features into practical
material systems, advanced synthesis methods are essential
for controlling polymer architecture, chain sequence, and
functionality.

3.1. Conventional Radical Polymerization

Due to its ease of use and adaptability, free-radical
polymerization (FRP) (Table 2) is the most popular technique
for large-scale polymer and composite synthesis.”
Nevertheless, it frequently lacks control, resulting in polymers
with gel formation, low chain-end fidelity, and a wide molecular
weight dispersion. FRP has been effectively used to create
SRPs despite these disadvantages. For example, Maity et al.”
created acrylate elastomers with self-healing, impact
resistance, and strong adhesion through one-pot FRP of 4-
vinylpyridine, acrylates, and acrylic acid, achieving enhanced
mechanical strength via ionic and hydrogen bonding; Wang et
al.” created semi-rigid polymers exhibiting liquid-crystalline
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Table 2. Comparison of controlled polymerization strategies for SRPs.

Method Control over Catalyst/Initiator Solvent System Typical Polymers Pros Cons
Mw & D Made
FRP Low Thermal initiators Bulk, solution Acrylates, styrenics Simple, scalable Broad b, low end-
(AIBN, APS) group fidelity.”
ATRP High Cu/Fe complexes + Aqueous, PMMA, PS, block  Excellent control, Metal residue, ligand
ligand organic copolymers block copolymers cost. 768089
RAFT High RAFT chain-transfer ~ Wide range, Stimuli-responsive  Broad monomer CTA removal/color
agents incl. water block copolymers  scope, architectures contamination.?683
Photo-RDRP  Very high Organic photocatalysts, Aqueous, ionic Functional block Spatiotemporal Light penetration,
S-dots liquids copolymers control, metal-free scale-up.t6:2
CROP/AROP  High Lewis acids, Solvent-free, Oxazolines, PVEs, Precise architecture, Moisture sensitivity,
organocatalysts ionic liquids degradable degradable limited
polyesters monomers.88:90.91

PHEMA-b-PTBMA  have

room

and temperature-responsive behaviour; and Connal et al.”®
synthesized PNIPAM-based copolymers with temperature
sensitivity and metal-binding capacity.

3.2. Atom Transfer Radical Polymerization

Using transition metal catalysts to regulate polymer
formation, ATRP is based on the atom transfer radical addition
(ATRA) mechanism. Matyjaszewski and others' contributions
made ATRP more environmentally friendly and adaptable for
usage in industry and biomedicine by enabling ppm-level
copper catalysts (via ARGET and ICAR ATRP), better control
over polymer architecture, and wider applicability in aqueous
and heterogeneous settings.”®’” Alkyl/aryl halides function as
initiators in ATRP, while ligands and transition metal halides
(such as Cu* and Fe?*) create active radicals. Variants like
photoATRP, eATRP,”® and sonoATRP,” which offer fine
spatial-temporal control, are made possible by stimuli like
light, electricity, or ultrasound. The creation of porous and
functional polymeric nanoparticles has been made possible by
surface-confined ATRP (SC-ATRP).8°

3.3. Photo and Thermal Reversible Deactivation Radical
Polymerization

Polymer chemistry was transformed by RDRP, which
allowed for controlled synthesis with exact molecular weights,
topologies, and chain-end functions. Techniques like
photoRDRP enable metal-free, light-driven polymerization via
photo-organocatalysis, resulting in customized polymer
topologies.®* Ni-Co alloy nanoparticle-mediated RDRP,®?
which produces recyclable, multi-stimuli-responsive, and self-
healing block copolymers. Whereas ionic liquid based
photoRDRP systems that produce dual pH/thermal-responsive
polymers are examples of recent advancements. Low-
dispersity polymers and responsive block copolymers like

synthesized at
temperature using S-dot mediated RDRP.?? 57 Furthermore,
Ag-Pd nanocatalyst systems in recyclable ionic liquids
improved sustainable photoRDRP by providing accurate
control and recyclability that are perfect for the creation of
smart and functional polymers.16

3.4. Reversible Addition Fragmentation Chain Transfer
Polymerization

A potent controlled/living radical polymerization technique
for creating polymers with exact topologies, limited dispersity,
and distinct end groups is RAFT polymerization.®® It makes it
possible to create sophisticated functional materials with
adjustable characteristics. For instance, RAFT was used to
create thermo-responsive poly(N-acryloylpiperidine-random-
N-acryloylpyrrolidine) copolymers with adjustable LCST (3—
47 °C), while multifunctional star-shaped copolymers with triple
stimuli responsiveness (pH, light and temperature) showed pH-
triggered drug release and  self-assembly into
nanoaggregates.> These advancements demonstrate RAFT'S
adaptability in creating complex polymeric systems for smart
and functional polymers and healthcare applications.8

3.5. Cationic and Anionic Polymerization

The regulated synthesis of SRPs is made possible by
cationic ring-opening polymerization (CROP), which starts
cyclic monomers via cationic species. Recent advancements
include photo- and electrochemically switchable devices that
provide exact control over the structure of polymers in mild,
metal-free environments. CROP has created sophisticated
copolymers with redox responsiveness and tunable self-
assembly, such as PTEVE-b-PPEGMA and PSt-b-PTEVE.? 8
Anionic ring-opening polymerization (AROP), on the other
hand, produces polymers with regulated molecular weights
and dispersity. Degradable self-immolating networks, hybrid
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Figure 4. Value chain and life cycle of polymers. Reused with consent.’ Copyright 2022, Wiley-VCH GmbH
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thermo-responsive magnetic polymers, and multi-stimuli-
responsive block copolymers that combine redox, pH, and
thermo-responsive units are examples of developments.®” For
responsive materials, coatings, and biomedical applications,
these developments in cationic and anionic polymerization
broaden the design of smart and functional polymers.8

4. Sustainable Polymer Design Strategies

Building on these molecular-level design capabilities,
integrating sustainability principles into polymer development
has become equally critical to ensure long-term environmental
compatibility. When careful selection of polymer classes,
renewable monomers, and environmentally responsible
synthetic approaches are done it reduces ecological impact
across the material’s lifecycle. Decisions are guided by green
chemistry principles, emphasizing low toxicity, energy
efficiency, and waste minimization.

Transitioning to bio-based feedstocks such as agricultural
residues, plant oils, carbohydrates, and waste-derived
chemicals lowers dependence on fossil resources and helps
reduce the carbon footprint. Sustainable polymerization
methods including enzymatic catalysis, organocatalysis, and
solvent-free or aqueous processes further enhance resource
efficiency and minimize hazardous reagent use.®? Integrating
these strategies with systems-level considerations ensures
that materials remain functional in service while enabling
responsible, resource-efficient recovery.®®  Sustainable
polymer design is thus a comprehensive approach combining
responsible sourcing, green synthesis, targeted functionality,
and intentional reintegration into material cycles (Figure 4).

4.1. Renewable Feedstock

High greenhouse gas emissions during the extraction and
processing of fossil fuels are one of the major environmental
effects of traditional  petrochemical-based  polymer
manufacture.® Producing one ton of polyethylene can release
between 1.8 to 3.2 tons of CO, equivalents,®® and Hazardous
byproducts from the manufacturing process can contaminate
soil, water, and air.®® Moreover, the extremely slow
degradation of conventional polymers leads to persistent
plastic pollution and microplastic accumulation in ecosystems
and food chains, posing risks to wildlife and human health.
These issues emphasize the importance of adopting
renewable feedstocks and sustainable polymer design to
reduce environmental harm.

Some of the widely used synthetic biodegradable polymers
include polyesters such as Polylactic acid (PLA),
Polyhydroxyalkanoates (PHAs) (Figure 5).

Feedstock Biobased Monomers Polymers

—
> Polybutylene Adipate Terephthalate (PBAT)

Butanediol

Lactic acid 2>

To lessen long-term ecological effects, synthetic
biodegradable polymers are deliberately designed to break
down in the environment, usually through microbial enzymatic
activity. Polyester-based systems are among the most popular
approaches.

4.2. Green Synthesis Approaches

Growing environmental awareness in the late 1980s, led to
introduction of green chemistry principles by Anastas and
Warner, which provided guidelines for reducing environmental
impact in chemical and polymer processes.”® The
commercialization of PLA from renewable feedstocks by
companies like NatureWorks in the late 1980s—-1990s further
demonstrated the viability of biodegradable polymers.®® These
innovations established the foundation for modern green
polymer synthesis focused on sustainability and reduced
environmental impact. Several green strategies for polymer
synthesis are as follows:

4.2.1. Enzymatic Catalysis

Enzymatic catalysis represents an important green
approach in polymer synthesis due to its ability to operate
under exceptionally mild reaction conditions. Enzymes like
lipases,'® peroxidases'®, and laccases!®? are used in
enzyme-catalyzed polymerization to promote polymer
synthesis in conditions similar to ambient temperature and
pressure, greatly lowering energy consumption and
environmental effect.

4.2.2. Organocatalysis

In polymer chemistry, organocatalysis has grown in
importance as a method that allows for the moderate and
controlled execution of polymerization reactions.'%
Organocatalysts have been applied across multiple
polymerization types, providing precise activation of
monomers and chain ends to obtain well-defined
macromolecular structures.%4

4.2.3. Solvent-Free / Green Solvent Polymerization

The transition toward green solvent systems has become
a major focus in sustainable polymer synthesis. lonic liquids,
characterized by negligible vapor pressure, high thermal
stability, and tunable solvation properties, have emerged as
effective alternatives to conventional volatile organic solvents.
Their non-volatile nature minimizes environmental emissions
and reduces health hazards typically associated with solvent-
based polymerization processes.% Furthermore, ionic liquids
can be recovered and recycled during or after polymerization,
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Figure 5. Different pathways in a life cycle assessment. Reused with consent.®” Copyright 2022, Wiley-VCH GmbH
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thereby enhancing process efficiency and reducing waste,
which contributes to improved overall sustainability.%6

4.3. Recyclability and Upcycling Strategies

Sorting through material recovery facilities (MRFs), where
waste streams are divided into categories including post-
industrial waste (PIW), post-consumer waste (PCW),
municipal solid waste (MSW), and ocean plastics, is usually
the first step in managing plastic trash.}” PIW generally
exhibits higher purity and homogeneity compared to other
waste types, making it more amenable to closed-loop industrial
recycling. In contrast, PCW and MSW often contain mixed
polymers and contaminants, reducing recyclability and leading
to significant material loss. To overcome these limitations,
several chemical recycling technologies have been developed.
Thermal degradation processes, such as pyrolysis, convert
mixed plastic waste into pyrolysis oil, which can be upgraded
via catalytic treatment or steam cracking to produce olefins and
aromatics suitable for manufacturing new polymers (Figure
6).1% It is also possible to depolymerize polyesters and

Post-Industrial
Plastic Waste \

Ocean *

Plastic Waste

Film Collection g
& Bailing :

EYERAORT N Textile Collection
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Toxtile; l

polycarbonates chemically or enzymatically, for example
through glycolysis, to recover their monomers for
repolymerization.'®® These emerging recycling and upcycling
approaches aim to retain material value and support a more
circular polymer economy.

5. Smart and Functional Polymers for Health
Applications

These structurally controlled smart and functional polymers
have emerged as cutting-edge materials in biomedicine. They
offers innovative solutions that surpass traditional materials
and therapies through their exceptional biocompatibility,
biodegradability, and stimulus-responsive versatility for diverse
medical applications like tissue regeneration, controlled drug
delivery, and diagnostic advancements. 19 111

5.1. Drug Delivery

In recent decades, smart and functional polymers have
become vital to pharmaceutical chemistry due to their
extensive use in drug delivery systems.''? 113 Polymeric
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Figure 6. Summary of current management system of waste plastics. Reused with permission.'%” Available under a CC-BY license. Copyright 2022 Li et al.
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Figure 7. Schematic representation of the fabrication of multi-responsive hydrophilic fluorescent MIP nanocapsules and their application as bioenvironment-
adaptive drug carriers for cancer treatment. Reused with consent.114 Copyright 2025, Wiley-VCH GmbH.

innovations are crucial in addressing the challenges of modern
drug delivery, especially for biopharmaceuticals and targeted
therapies. For example, Zhang et al.l* designed multi-
responsive hydrophilic fluorescent molecularly imprinted
polymer (MIP) nanocapsules for targeted cancer treatment
(Figure 7). These nanocapsules, incorporating disulfide-
crosslinked shells with sialic acid-imprinted sites and
thermo/pH-responsive polymer brushes, showed excellent
stability, biocompatibility, and tumor-specific activity. The MIP
nanocapsules demonstrated high drug-loading efficiency,
prolonged blood circulation, and rapid intracellular drug
release, resulting in effective tumor inhibition. This work
presents a versatile “all-in-one” nanoplatform that combines
targeting, imaging, and controlled drug delivery for advanced
cancer therapy. In a related work from our group, Dolui et al.>
created  poly(N-isopropylacrylamide)-block-poly(methacrylic
acid)-umbelliferone  ((PNIPAM-b-PMAA),-UMB), a multi-
stimuli-responsive multiarm star-shaped block copolymer
designed for targeted and regulated drug delivery. In aqueous
conditions, this polymer spontaneously self-assembled into
nanoscale aggregates that effectively contained DOX inside
their hydrophobic cores. These DOX-loaded aggregates
enabled controlled, site-specific drug release under
physiological settings, particularly at body temperature
(=37 °C) and an acidic pH (~5), which resembled the tumour
microenvironment. The integration of the fluorescent UMB unit
also made it possible to track the distribution process in real
time using fluorescence imaging, offering a combination
therapeutic and diagnostic benefit.
5.2. Cancer Therapy and Diagnostics

Cancer is a complicated and frequently fatal illness that is
defined by unchecked cell growth and division that interfere
with vital body processes.''® Surgery, chemotherapy,
radiation, immunotherapy, and targeted molecular therapy are
examples of current treatments that have therapeutic benefits
but also significant drawbacks, such as tumour spread or
recurrence, harm to nearby healthy tissues, and extremely
harmful side effects.’> Many smart polymer based sensors
developed to monitor glucose in diabetic patients or detect
tumor markers in cancer patients can deliver real-time

information, facilitating personalized treatment and early
medical intervention.*'® For example, Oliveira et al.''’ created
a MIP-based biosensor to detect the breast cancer biomarker
CA 15-3 selectively (Figure 8). They produced high-affinity
recognition sites that could differentiate CA 15-3 from other
proteins via electro-polymerization on a carbon screen-printed
electrode. The sensor has great potential for point-of-care
breast cancer detection and provides a quick, sensitive, and
affordable substitute for conventional immunoassays.

Polymer based systems can be designed to deliver
anticancer drugs in response to the acidic conditions of tumor
microenvironments, thereby improving therapeutic
effectiveness while reducing adverse side effects.!'® Bai et
al.1*® designed M-POSS-based molecularly imprinted polymer
(MIP) microparticles for paclitaxel (PTX) delivery in cancer
therapy. Synthesized via RAFT precipitation polymerization,
the spherical microparticles (170-490 nm) showed high drug
loading (17.1%) and encapsulation efficiency (85.5%). They
exhibited pH-sensitive behavior, releasing PTX faster under
acidic conditions similar to tumor environments, indicating
strong potential for controlled and targeted cancer drug
delivery.

5.3. Tissue Engineering and Regeneration

Tissue integrity can be affected by various factors such as
inflammation, tumors, injuries, and surgical procedures.'?
These conditions often result in irregularly shaped defects in
tissues like bone, cartilage, and skin, differing in size and
depth.*?® Due to the body's limited regenerative ability,
biomaterials are often required to support the repair of such
complex and extensive tissue damage.*?° Conventional tissue
engineering methods usually depend on static scaffolds that
cannot dynamically adjust to variations in the tissue
environment, restricting their capacity to mimic complex
biological conditions.*?* In contrast, smart and functional
polymeric materials can sensitively respond to environmental
stimuli, creating a dynamically adaptable microenvironment
that improves interactions between cells and implants.1
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These microspheres can accurately control processes like
swelling, degradation, and drug release, ensuring timely
cellular support and signal communication, which ultimately
facilitates effective tissue regeneration.?3

SRP microspheres have been explored for bone defect
repair. Song et al.'?* created a dual-responsive microsphere
system triggered by ultrasound and the bone injury
microenvironment (low pH and high H.O;). The system
achieved controlled release of Mn2+ and bone morphogenetic
protein-2 (BMP-2), with ultrasound enhancing release rates.
MnO: neutralized acidity, removed reactive oxygen species,
and promoted osteoblast growth and mineralization. It also
facilitated M1-to-M2 macrophage polarization, reduced
inflammation, and created an immunoregulatory niche,
resulting in nearly 90% bone regeneration after 8 weeks.

5.4. Wound Healing

As the body’s largest organ, the skin performs essential
physiological functions, including protection and secretion.? It
acts as a barrier that shields against infections and prevents
excessive fluid loss.1?® However, injuries can compromise this
barrier, leading to wounds.'?® By adding specific functional
groups, polymers can respond to environmental stimuli such
as pH, temperature, ionic strength, or biomolecular
interactions.’?  Therefore, improving the therapeutic
effectiveness of antibiotics at both the bacterial and infected
tissue levels is crucial to combat the growing challenge of
bacterial infections.'?” Recent progress in biomaterials has
highlighted smart and functional polymers as promising
candidates for next-generation wound care systems.

For example, Xu and Zou et al.*?8 created a hydrogel-smart
nanoparticle system to heal wounds infected with bacteria
(Figure 9). While integration into a thermosensitive hydrogel
(HG) allowed for sustained release and wound protection,
rifampicin-loaded chitosan nanoparticles (R-CNP) improved
antibiotic absorption and bactericidal activity. In a mouse
model, this platform reduced bacterial load by 98.5%
compared to free rifampicin, demonstrating strong potential for
clinical wound infection therapy.

5.5. Biosensing

v Conductive i

v Stable 22\-

Polymers have recently become essential in biosensing
due to their adjustable chemical structures, mechanical
strength, and excellent biocompatibility.*?® Polymers can react
to environmental stimuli like pH, temperature, ionic strength, or
biomolecular interactions by adding particular functional
groups. 9 Additionally, when combined with enzymes,
antibodies, nucleic acids, or other biomolecules, they help
maintain the activity of these sensing elements, allowing
accurate detection and monitoring of target biomarkers.*3!

For instance, Fatkullin et al.**2 introduced reduce GO on
the surface of a polyethylene terephthalate (PET)/textile
sandwich (rGO/PET/textile), a high-performance graphene
polymer composite bioelectrodes via laser processing on
textile substrates (Figure 10). The incorporation of a PET layer
enhanced conductivity (45 Q sq™), mechanical stability, and
biocompatibility while minimizing polarization effects. These
flexible, durable electrodes outperformed commercial ones in
biosensing applications, showing excellent skin compatibility
and long-term stability for wearable smart clothing devices.
The adaptability and responsiveness demonstrated in
biomedical systems highlight the broader potential of smart
polymers across technologically demanding fields.

6. Smart and Functional Polymers for
Energy Applications

Leveraging these same attributes, smart and functional
polymers are increasingly being engineered for next-
generation energy storage and conversion technologies.

6.1. Energy Storage

In order to address the increasing need for portable and
flexible power systems and enable the sustainable and
dependable use of renewable energy sources, energy storage
is crucial. The search for efficient and environmentally friendly
substitutes is prompted by the fact that conventional materials
frequently fail to strike a balance between high performance
and environmental sustainability. The combination of electrical
conductivity, mechanical flexibility, and ease of manufacturing
has made conductive polymers (CPs) a potential option. Their
attractiveness is further increased by recent developments in
bio-derived conductive polymers and polymer electrolytes,
which provide environmentally friendly, renewable, and
biodegradable alternatives. These materials work together to
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Figure 10. Schematic illustration of rGO/PET/textile hybrid materisals for biosensing applications in wearable physiological signal monitoring. Reused with

consent. 132 Copyright 2024 American Chemical Society.
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create lightweight, high-performing, and sustainable batteries
and supercapacitors of the future.
6.1.1. Conductive Polymers in Supercapacitors and
Batteries

For effective power generation and storage, sustainable
energy systems need materials that are lightweight, flexible,
and reasonably priced.'® CPs are one type of developing
material, have drawn a lot of interest due to its special capacity
to combine the mechanical flexibility and processability of
plastics with metal-like conductivity.*** These conjugated Tr-
electron backbones of intrinsically conductive polymers (ICPs)
can be doped to obtain high conductivity.**®> Through quick and
reversible redox processes, CPs have exceptional
electrochemical behaviour, allowing for high
pseudocapacitance and power density in solar cells, batteries,
and supercapacitors (Figure 11).13 37 Typical instances
include PANI, PPy, and PEDOT:PSS's versatility in energy
devices is demonstrated by its widespread use as electrode
materials, conductive additives, and hole-transport layers.3%
139
CPs have found widespread use in energy storage systems,
especially in supercapacitors and rechargeable batteries,
where their multifunctional qualities enable improved
electrochemical performance and device stability. This is due
to their special combination of electrical conductivity, flexibility,
and tunable chemistry.

Figure 11. Various applications of conductive polymers. Reproduced with
consent.140 Copyright 2018 American Chemical Society

6.1.2. Supercapacitors (Electrochemical Capacitors)

CPs serve as effective pseudocapacitive electrode
materials, enabling rapid and reversible redox reactions in
addition to double-layer charge storage. High-surface-area
films of PANI, PPy, and PEDOT exhibit excellent capacitance
performance.'#' Hybrid structures combining nanostructured
metal oxides with PANI have produced flexible and transparent
supercapacitors with enhanced energy storage capability .42
Notably, PEDOT:PSS thin films can act as both current
collectors and active electrodes in all-solid-state transparent
devices fabricated via simple spin coating on PET
substrates.*®> These electrodes demonstrate high optical
transmittance and millifarad-level areal capacitance. The
superior  conductivity, flexibility, and pseudocapacitive
behavior of CPs make them promising materials for next-
generation supercapacitors.4

6.1.3. Batteries

In rechargeable energy systems such as lithium-ion and
sodium-ion batteries, CPs have been explored as sustainable
alternatives to conventional electrode materials. The concept
of Li-ion batteries, first proposed by Whittingham (1976) and
commercialized by Sony in 1990, inspired the development of
polymer-based electrodes that combine flexibility, conductivity,
and environmental compatibility.’® Early efforts by
Bridgestone-Seiko and VARTA/BASF led to commercial
batteries utilizing PPy and PANI, respectively . When taken as
a whole, these advancements position conductive polymers as
essential components for the upcoming generation of flexible
and environmentally friendly energy storage technologies.

6.1.4. Biopolymer-Based Electrolytes and Separators

The shift to sustainable energy technologies is being
propelled by electrochemical energy storage systems,
especially supercapacitors and lithium-ion batteries (LIBs).146
A key component in these systems is the electrolyte, which
enables ion migration during electrochemical cycling.'¥
Despite having a high ionic conductivity, conventional liquid
electrolytes have significant safety issues due to their volatility,
flammability, and leaking.*® To overcome these issues, gel
polymer electrolytes (GPEs) have emerged as hybrid systems
that combine the high ionic mobility of liquids with the
mechanical stability of solids.*® GPEs consist of a polymer
matrix swollen with liquid electrolyte, forming a semi-solid
phase that enhances electrode-electrolyte contact, thermal
stability, and suppresses lithium dendrite growth. Their tunable
electrochemical and mechanical properties make them
suitable for diverse energy devices including Li-S, air, Na-ion,
Zn-ion, and dual-ion batteries.'® Overall, GPEs represent a
crucial step toward sustainable, high-performance energy
storage by coupling green chemistry principles with advanced
electrochemical functionality.

6.2. Energy Conversion

Energy conversion technologies are vital for harnessing
renewable energy and transforming it into usable electrical
power, ensuring long-term sustainability and reduced carbon
emissions. Among these, polymer-based systems have gained
prominence due to their light weight, flexibility, and tunable
electronic properties. CPs and their composites are
increasingly employed in solar cells, piezoelectric materials
and fuel cells, where they enable efficient photon-to-electric
and chemical-to-electric energy conversion, respectively. Their
ease of processing, compatibility with flexible substrates, and
potential for low-cost, large-scale fabrication make them
promising candidates for next-generation clean energy
technologies.  Additionally, polymer-based piezoelectric
materials can convert mechanical vibrations into electrical
energy, further broadening their role in sustainable energy
harvesting.

6.2.1. Polymer-Based Solar Cells (OPVs, Perovskite
Interfaces)

Organic photovoltaic (OPV) and perovskite solar cells
(PSCs), two types of polymer-based solar cells, have drawn a
lot of interest as flexible and affordable substitutes for
traditional silicon photovoltaics. These devices utilize
conjugated polymers as active materials for charge transport,
light absorption and electrode interfaces, enabling lightweight
and mechanically flexible architectures.'®! In order to enable
effective exciton dissociation and charge transfer, a common
polymer solar cell uses a donor-acceptor bulk heterojunction
(BHJ) structure, in which the photoactive polymer donor and
fullerene or non-fullerene acceptor materials are closely
combined.'®> Moreover, integrating conductive polymer
interfaces with perovskite layers enhances interfacial contact,
improves hole extraction, and suppresses charge
recombination, thereby increasing power conversion
efficiencies (PCEs) beyond 12% in flexible all-polymer
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devices.'®® Overall, polymer-based solar cells represent a
sustainable and adaptable approach toward next-generation
clean energy technologies.

6.2.2. Membranes for Fuel Cells and Hydrogen Production

Fuel cells represent an advanced energy conversion
technology that directly transforms chemical energy into
electricity through electrochemical reactions, offering high
efficiency, low emissions, and sustainability. Recent
advancements have significantly expanded their application,
particularly in electric vehicles and portable power systems.%*
Direct methanol fuel cells (DMFCs) have garnered significant
attention among different varieties because of their high
energy density, fuel mobility, and environmentally beneficial
functioning.*® The efficiency of DMFCs is largely influenced by
the performance of electrocatalysts, whereCPs play a crucial
role. CPs, such as PPy, PANI, and PEDOT, often form 1D and
2D nanostructures that enhance proton conductivity, facilitate
charge transfer, and improve catalyst dispersion.®® As a
result, conducting polymer-based fuel cells represent a
promising pathway toward clean, efficient, and sustainable
energy conversion technologies.

6.2.3. Polymer-Based Piezoelectric Materials

Piezoelectric materials have drawn considerable interest
because they can be used in advanced energy-storage
systems and self-powered devices. Their distinctive property
of converting mechanical movement into electrical energy
makes them highly effective for harvesting mechanical energy.
When mechanical stress such as stretching or compression is
applied, these materials become polarized and produce an
electric voltage.'® Compared to conventional approaches,
piezoelectric systems offer notable benefits like flexibility,
durability, high sensitivity, and increased voltage and power
output, making them suitable for battery-free, wireless
applications.*®® Their versatile nature also allows seamless
incorporation into compact and miniaturized electronic
devices.

7. Smart and Functional Polymers for
Environmental Applications

Beyond healthcare and energy, smart polymers also play a
vital role in environmental protection, offering adaptive
solutions for water purification, pollution remediation, and
sustainable packaging.

7.1 Water Purification and Treatment

The integration of nanostructured adsorbents and
membranes for the efficient removal of heavy metals, dyes,
and newly emerging pollutants including microplastics has
been the focus of recent developments in water purification
technologies.'>® High surface area nanomaterials, like covalent
organic frameworks (COFs), metal-organic frameworks
(MOFs), and electrospun nanofibrous membranes (ENMs),
show higher adsorption capability and tunable pore topologies.
In addition to prove high flux and antifouling resistance, hybrid
ENMs embedded with metal oxides, carbon nanotubes, or
chitosan matrices work exceptionally well in capturing Pb?*,
Cd?*, and Cr?* ions. Additionally, membrane functionalization
with  hydrophilic and zwitterionic groups enhances
regeneration, stability, and selectivity, making them more
suitable for wastewater treatment in the real world.%® At the
same time integration of degradable backbones, bio-based
monomers, and controlled polymerization strategies that
enable chemical recycling will be essential to limit microplastic
formation and ensure that the development of functional
polymers remains environmentally safe.

Smart hydrogels have become dynamic materials that can
trap pollutants and release them under regulated conditions,
going beyond adsorption.'®® Through electrostatic and
hydrogen bonding interactions, these stimuli-responsive gels
can bind dyes and heavy metals, releasing them in response
to temperature or pH triggers for regeneration.?* The synergy
between these hydrogels and membrane systems is
highlighted by Randhawa et al.'®? with their function in next-
generation hybrid purification platforms. When combined,
membrane-assisted and adsorbent-based methods offer a
sustainable route for effective wastewater treatment.63

7.2 Pollution Remediation
7.2.1. Oil-Water Separation Membranes

Membrane based oil-water separation has become a viable
and effective substitute for traditional purification techniques
because of its high selectivity, low energy consumption, and
scalability. To selectively penetrate one liquid phase while
rejecting the other, the fundamental idea is to manipulate
surface  wettability and create  superhydrophobic—
superoleophilic or superhydrophilic-superoleophobic
interfaces. Recent research emphasises how additive
manufacturing, fluorine-free  coatings, and hierarchical
micro/nano structures can enhance membrane durability and
anti-fouling effectiveness. Furthermore, tunable separation
under external triggers like pH, temperature, or light is made
possible by Janus membranes with asymmetric wettability and
stimuli-responsive materials.*%* Pollutant degradation and self-
cleaning capacities are further improved by using conductive

Table 3. Representative smart polymer applications and their key performance indicators.

Application Domain

Representative Function

Key Performance Metrics Example Materials (with Citations)

Drug Delivery

Tissue Engineering

Wound Healing
Biosensing &
Wearables

Energy Storage
Energy Conversion

Water Purification

Pollution

Remediation

Stimuli-triggered drug release; tumor-
specific targeting

Adaptive scaffolds supporting cell
growth

Antibacterial hydrogels for moisture
balance

Conductive, flexible electrodes for
sensing

Supercapacitor electrodes; battery
interfaces

OPVs, perovskite interlayers, PEM
membranes

lon-selective adsorption; dye removal

Oil-water separation; antifouling
surfaces

Drug loading efficiency; release PNIPAM-based nanogels; pH-responsive
kinetics at physiological pH;  PAA copolymers,!10:114.115

cytocompatibility

Cell adhesion/proliferation; PEG-DA hydrogels; PDMAEMA

ECM remodeling; modulus & copolymers; bio-based elastomers.?2124175
degradation rate
Antibacterial inhibition zone;
fluid retention; healing time
Sensitivity; detection limit PEDOT:PSS hydrogel patches; MIP
(LOD); signal stability sensors. 44177

Capacitance; cycling stability; PANi electrodes; PEDOT:PSS-CNT
ionic/electronic conductivity ~ composites.4>178

Power conversion efficiency  Dopant-engineered CPs; Nafion-type
(PCE); mobility; durability copolymers,151:17°

Adsorption capacity; selectivity; PAA/PVA hydrogels; MOF-polymer
regeneration cycles membranes. 63180

Separation efficiency; fouling Janus membranes; amphiphilic graft
resistance; recyclability copolymers,166.181

Chitosan-PAA hydrogels; Ag-loaded
networks. 128176
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and photocatalytic nanoparticles. The necessity for
environmentally benign, multipurpose, and regenerable
membranes for next-generation oil-water separation systems
is highlighted by the difficulties in large-scale fabrication,
fouling resistance, and long-term stability that persist despite
notable advancements.165 166

7.2.2. Smart and Functional Polymers for Carbon Capture
and Gas Separation

Smart and functional polymers have created new
opportunities for gas separation and carbon capture due to
their strong CO; affinity, adjustable selectivity, and recyclable
nature. Advanced materials such as amine-functionalized
polymers, porous organic polymers, and polymeric
membranes that exhibit dynamic responsiveness to stimuli
such as temperature, pressure, or humidity enable efficient
CO; adsorption and controlled desorption.'®” Incorporating
nanomaterials such as graphene, MOFs, or ionic liquids into
polymer matrices improves permeability and CO2/N; selectivity
beyond Robeson's upper bound.'8%° Furthermore, flexible
polymeric topologies can be incorporated into scalable
membrane modules for post-combustion capture and industrial
gas purification. Because they provide environmentally benign,
regenerable, and energy-efficient alternatives to conventional
sorbents, these intelligent polymer systems are crucial
enablers of next-generation carbon management solutions.*”

7.3. Sustainable Packaging and Waste Management
7.3.1. Biodegradable and Recyclable Polymer Systems

Biodegradability and biocompatibility are crucial for SRPs
used in environmental and biomedical sectors. Biocompatible
SRPs are appropriate for medication administration,
biosensing, and tissue engineering because they shouldn't
cause toxicity or immunological reactions. Using natural
polymers like hyaluronic acid or chitosan, adding PEG chains,
or altering surfaces to lessen immunological recognition and
protein adsorption can all improve their compatibility.*’*
Biodegradability is essential for temporary implants, wound
healing, and environmental remediation because it guarantees
that polymers break down into innocuous byproducts, limiting
long-term buildup in the body or environment. Degradable
backbones are often designed using hydrolysable, redox-
labile, or enzyme-sensitive connections. The development of
sustainable and ecologically friendly SRPs is being aided by
the increasing usage of renewable monomers and green
synthesis methods."2

7.3.2. Self-Healing or Long-Life Materials to Reduce Waste

The creation of long-lasting and self-healing materials
presents a revolutionary way to reduce waste and increase the
longevity of useful equipment. Advances in polymeric,
supramolecular, and dynamic covalent systems have made it
possible for mechanical and electrical damage to be repaired
autonomously, restoring performance without the need for
outside assistance.'’”® These materials become more versatile
and recyclable when reversible bonds like hydrogen bonding,
disulphide, and Diels-Alder adducts are incorporated.
Research by Chandrasekar et al. shows that advanced
composites with incorporated healing agents show improved
durability in severe conditions, while self-healing energy
devices maintain efficiency under repeated stress. These
materials encourage sustainable, circular design in next-
generation technologies by prolonging product life and
drastically reducing electronic and polymer waste.1™

The broad utility of smart and functional polymers across
environmental, biomedical, and energy sectors reflects their
unmatched versatility and transformative potential (Table 3).

8 Future Perspectives

Advancements in smart and functional polymers will
depend on the integration of cutting-edge molecular design
with sustainable and scalable production methods. New
strategies such as sequence-controlled polymerization, eco-
friendly synthesis methods, and bio-derived monomers will
facilitate the creation of materials that can be finely adjusted
and that have less impact on the environment. In order to
realize translation in the real world, forthcoming systems need
to provide long-term stability, dependable responsiveness, and
suitability for large-scale production. The advancement of
adaptive, reconfigurable polymers will be expedited by
technologies like 4D printing, material discovery guided by
machine learning, and self-assembling architectures. It is of
equal importance to incorporate aspects of recyclability,
repairability, and end-of-life management into the design of
materials. By integrating performance with lifecycle
considerations, we can ensure that next-generation smart
polymers are designed not only for advanced functionality but
also for full environmental compatibility.

9 Conclusion

Smart and functional polymers are rapidly evolving as
adaptable materials capable of responding to diverse physical,
chemical, and biological triggers while supporting sustainable
technological development. This review summarized how
advanced polymerization methods including ATRP, RAFT,
RDRP, and other controlled or green synthetic approaches,
enable precise tuning of polymer structure, responsiveness,
and long-term stability. The adoption of renewable monomers,
environmentally benign catalysts, and recyclable or
degradable designs further enhances their ecological
relevance. Their wide-ranging applications from targeted drug
delivery, cancer therapy, tissue regeneration, and biosensing
to energy storage, energy conversion, water purification,
pollution control, and sustainable packaging, demonstrate their
impact across multiple sectors. The development of dynamic,
recyclable polymers that adhere to the principles of the circular
economy and tackle global issues in energy, environmental
protection, and healthcare will depend on the use of
technologies such as 4D printing, nanofabrication, and Al-
driven molecular design. It is essential to combine molecular
design with lifecycle thinking, and this review highlights the
necessity of designing future smart polymer systems for not
just advanced functionality but also full environmental
compatibility over their entire lifespan. Together, these
directions will guide the creation of next-generation, high-
performance materials that are both intelligent and
environmentally responsible.
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