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Abstract: Amino acids have emerged as sustainable and versatile building blocks for the creation of functlonal polymers Harnessing their

intrinsic structural diversity and biological relevance enables the design of unique, well- -
defined, biocompatible, and highly tailorable macromolecules. Beyond their natural \ achly

abundance, the exceptional biocompatibility of amino acid-derived polymers positions them
as promising candidates for a wide spectrum of biomedical applications. Moreover, the
diverse reactive functionalities of amino acids (such as carboxylic acid, amine, thiol, and
hydroxyl groups) provide a powerful synthetic toolbox, supporting a broad range of
polymerization strategies from step-growth to chain-growth mechanisms. This review
highlights the recent developments (2015-present) in the synthesis of amino acid-
conjugated polymeric architectures and their biomedical applications. By bridging
molecular design, polymer chemistry, and bio-functionality, we highlight the transformative
potential of these bioinspired materials and anticipate their pivotal role in shaping the next

generation of sustainable and therapeutic polymer platforms.
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1. Introduction

Natural amino acids, the fundamental monomeric units of
proteins, are indispensable to life for the maintenance and
regulation of all living systems, providing the molecular
foundation for cellular architecture, functional organization,
and the complex biochemical processes.>? Proteins possess
distinct three-dimensional conformations that are critical to
their biological function, as their structure governs molecular
interactions, target binding, and the execution of specific
cellular processes essential to life (Figure 1).° To emulate the
structure and function of natural proteins, researchers have
developed amino acid-based synthetic materials to mimic their
remarkable specificity, conformational flexibility, and functional
efficiency in both biological and technological applications. In
this context, amino acid-derived polymers have attracted
significant interest in biomedical research due to their unique
properties, such as superior agueous solubility, inherent self-
assembly capabilities, stimuli-responsive behavior, and
outstanding biocompatibility.> The inherent biological activity
of amino acids, largely attributed to the presence of a chiral
centre (excluding glycine), positions them as highly attractive

candidates for use as foundational monomers in the
development of functional polymeric materials.”
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The diverse chemical functionalities of amino acids, such
as carboxyl (-COOH), hydroxyl (-OH), amino (-NH), and thiol
(-SH) groups, render them highly versatile and attractive
moieties for polymer functionalization (Figure 1).8 The initial
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Figure 1. Functional groups of amino acids and the various strategies
employed for the synthesis of amino acid-based monomers.

breakthrough in the development of amino acid-based
polymers was achieved by Curtius and coworkers in 1921,
through the synthesis of polypeptides using ring-opening
polymerization of a-amino acid N-carboxyanhydrides (NCAs).°
This invention has offered a promising pathway for the
development of bio-inspired materials through the
incorporation of natural amino acids into polymeric
architectures. Since the initial discovery, various polymeric
architectures, such as homopolymers, random and block
copolymers,  hyperbranched  polymers, and others
incorporating natural amino acid moieties, have emerged as
promising smart materials (Figure 2A,B).2° The design and
application of these amino acid-derived polymers have
become a significant focus across materials science,
chemistry, and biology due to their unique and versatile
properties.*!

Sanda and Endo made significant contributions to the field
by systematically classifying amino acid-functionalized
polymers into two distinct categories: (i) incorporating amino
acid residues within the polymer backbone, and (ii) bearing
amino acid functional groups as pendant side chains.*?3 This
structural integration imparts a broad spectrum of desirable
properties, including tunable amphiphilicity,’* intrinsic
chirality,’>  organocatalytic  activity,’®  biocompatibility,*’
enhanced aqueous solubility,!® and the ability to form complex
self-assembled hierarchical architectures.'® Additionally, a

wide variety of polymeric nanostructures, including vesicles,
micelles, nanogels, nanorods, nanofibers, etc., can be
fabricated from these amino acid-containing polymers by
precisely controlling the conditions governing self-assembly of
polymers.?®2t  The functional properties of these
nanostructures, such as size, shape, composition, surface
charge, stability, porosity, and mechanical strength, can also
be readily tailored to meet the specific requirements of targeted
applications.??23 In this regard, a diverse range of amino acid-
derived polymeric nanostructures has demonstrated significant
potential across various biomedical applications, including
antimicrobial therapies,?* cellular interactions,?® antifouling
coatings,?® drug delivery,?” wound healing,?® and tissue
engineering?® applications. O'Reilly and colleagues explored
the synthesis of functional polymers incorporating amino acid
moieties using controlled radical polymerization (CRP)
techniques.®® In parallel, Mori and Endo provided a
comprehensive review on the fabrication of amino acid-based
thermo- and pH-responsive block copolymers via reversible
addition-fragmentation chain transfer (RAFT) polymerization,
highlighting their self-assembly behavior, tunable chiroptical
properties, and potential applications in catalysis and
optoelectronics.3! Our group summarized pH-responsive, side-
chain amino acid-containing polymers and their potential
applications.® Later on, a few updated reviews were also
published in the area of side-chain amino acid-containing
polymers.t333 Although a number of review articles have been
published in this field,>3* the fundamental importance of amino
acid-containing polymers warrants continued attention.

This review highlights recent advances (2015-present) and
emerging trends in the design, synthesis, and biomedical
applications of amino acid-containing polymers. At first, the key
synthetic strategies and fundamental properties of amino acid-
functionalized polymers are outlined, followed by a discussion
of recent progress in their design and self-assembly. Special
attention is given to their therapeutic potential in biomedical
contexts. While a comprehensive exploration of this vast area
of research is beyond the scope of a single review, we aim to
provide a focused overview of current advancements and
crucial developments in amino acid-based polymer research.
Finally, we conclude with a discussion on future perspectives,
emphasizing emerging directions in the design of novel amino
acid-derived polymers for further advancement in the field.
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Figure 2. Schematic representation of various architectures of (A) main-chain amino acid-containing and (B) side-chain amino acid-containing polymers.
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2. Synthesis of amino acid-containing
polymers

The design of polymers from amino acids holds significant
promise in bridging the gap between traditional synthetic
materials and the complex functionality of natural biopolymers.
Amino acids possess three primary functional groups: the
amino group (-NHy), the carboxyl group (-COOH), and a
variable side chain (-R group), each offering unique chemical
reactivity.!* These unique functionalities enable the rational
design and tailored synthesis of amino acid-based functional
materials with broad application potentials. Since the discovery
of amino acid-containing polymers, the incorporation of these
amino acids into the polymer main chains has attracted
considerable attention due to their intrinsic chemical versatility
and biodegradability (Figure 3A).%> A variety of synthetic
strategies have been employed to construct these main chain
amino acid-containing polymers, including conventional
polycondensation, interfacial and solvent-free thermal
polycondensation, and ring-opening polymerization (ROP) of
N-carboxyanhydrides (NCA) and O-carboxyanhydrides
(OCA).** Among these, solution-phase polycondensation has
proven particularly effective for synthesizing poly(ester
amide)s, poly(ether ester amide)s, and poly(ester urethane
urea)s.® Meanwhile, polypeptides and polyesters are more
commonly produced via ROP of NCAs and OCAs, offering
precise control over molecular architecture and composition.*®
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Figure 3. Schematic illustration of amino acid-derived polymer synthesis,
showcasing functionalization at the (A) main chain polymer backbone
and (B) side-chain pendants. Adapted with permission from ref 8.
Copyright (2021) Wiley-VCH GmbH.

/

In recent years, polymers functionalized with side-chain
amino acid moieties have emerged as highly promising
candidates for a wide range of biomedical applications (Figure
3B). In the synthesis of side-chain amino acid pendant
polymers, the polymerizable group can be strategically
introduced at the N-terminus, C-terminus, or, in some cases,
at the side-chain (-R group) functionalities such as -SH or -OH.
Monomers modified at the N-terminus retain the carboxylic
acid (-COOH) and side-chain -R group functionalities in the
final polymer, whereas C-terminus modifications preserve the
amino (-NHz) group and side-chain -R group functionalities
along the side chain. This site-specific functionalization offers
precise control over the polymer architecture and functional
group presentation, which is critical for tailoring material
properties for biomedical applications. In the context of
biomimetic polymer design, the preservation of the -R group is
particularly critical, as it plays a vital role in dictating protein-
like folding, molecular assembly, and biological function.®” In
this context, early work by Kulkarni and Morawetz laid the
foundation for synthesizing poly(methacryloyl-L-alanine) and
poly(methacryloyl-1-glutamic acid) from N-terminus-modified
monomers using the conventional free radical polymerization
(FRP) technique.®® Conversely, the first report on the synthesis
of C-terminus-functionalized monomers was presented by Sun
and Gao, employing esterification reactions between 2-
hydroxyethyl methacrylate (HEMA) and various protected
amino acids, including phenylalanine, glycine, alanine, valine,
and lysine via both atom transfer radical polymerization
(ATRP) and FRP.*®* Later on, nitroxide-mediated
polymerization (NMP) and RAFT polymerization have also
been extensively used to prepare these types of polymers.4°
Our research group has made significant contributions to the
development of diverse amino acid-derived polymers using
RAFT polymerization, specifically through the synthesis of C-
terminus-modified monomers, enabling the incorporation of a
broad range of functional side chains into the polymer
backbone.®? The following section provides a brief overview of
the structural features of amino acid-containing polymers.

3. Characteristics of amino acid-containing
polymers

Amino acids are capable of adopting a zwitterionic
structure across a broad pH range, contributing to their unique
physicochemical properties.** However, when incorporated
into the polymer backbone via condensation reactions to form
poly(amino acids), this zwitterionic character is typically lost
due to amide bond formation.*? In contrast, functionalization at
the N- or C-terminus of amino acids, followed by their
incorporation into polymer side chains, enables the
preservation of their inherent ionic character, yielding cationic
or anionic functionalities depending on the site of
modification.’®> The free -COOH and -NH, groups present in
polymer side chains exhibit pH-responsive behavior,
undergoing protonation or deprotonation depending on the
surrounding aqueous environment.*344 Protonation of -NH,
groups, in particular, results in the formation of cationic
polymers, which are valuable for a variety of applications due
to their charge-responsive behavior. These functional groups
also serve as versatile reactive sites for post-polymerization
modifications, enabling the introduction of tailored
functionalities.*®

Incorporating amino acid residues as pendant side chains
imparts stimuli-responsive properties, such as sensitivity to
temperature and ionic strength, expanding their utility in
applications ranging from polyelectrolytes to chiral recognition
systems and bioactive compounds.*® Additionally, the side-
chain (-R group) of amino acids provides a functional handle
for chemical modification. For instance, -SH group of cysteine
enables efficient functionalization via thiol-ene click or thiol-
Michael addition,*” facilitating the synthesis of zwitterionic
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monomers with free a-amino or a-carboxylic acid groups. potential use in temperature sensing applications (Figure
These chemically modified monomers enable the rational 4A).%° The thioether bonds in PMTLC were oxidized using
design and synthesis of advanced zwitterionic materials, hydrogen peroxide, resulting in the formation of water-soluble
offering tunable physicochemical properties suited for a wide PMTLC®X. Subsequently, the methylthio groups were
range of applications. The following section presents a methylated with methyl iodide, followed by an ion-exchange
comprehensive overview of the biomedical applications of process to produce sulfonium-containing polypeptides (PPLC-
various amino acid-containing polymers reported since 2015. DMS-X, where X = | or BF,4). These PPLC-DMS-X polymers

. . . . .. exhibited upper critical solution temperature (UCST) behavior
4. Applications of amino acid-containing as well as thermo- and oxidation-responsive characteristics in
polymers aqueous environments. Both PMTLC and PPLC-DMS-X

displayed a structural transition from B-sheet to a-helix upon
oxidation. Furthermore, the cationic variant PPLC-DMS-I
showed strong interactions with the anionic dye methyl orange
(MO), resulting in a clear linear relationship between solution
absorbance and temperature, highlighting its potential as a

Owing to their exceptional properties, amino acid-
containing polymers have emerged as advanced functional
biomaterials, increasingly replacing traditional materials such
as metals, ceramics, and conventional composites in various
technological applications. In recent years, both their

molecular forms and self-assembled nanostructures have temperature sensor. In terms of biocompatibility, sulfonium-
been widely explored in diverse fields including drug delivery, functionalized polypeptides (PPLC-DMS-I, PPLC-DMS-BF,,
gene transport, tissue engineering, biosensing, metal ion and PPLCOX-DMS-BF,) exhibited low cytotoxicity toward
removal for water purification, and aspects of food packaging. RAW 246.7 cells, maintaining over 75% cell viability within a
However, in this review, we focus specifically on their concentration range of 0.02-0.2 mg/mL. In another report,
biomedical applications.*® We have discussed this under two Xiong and coworkers developed an antimicrobial polypeptide
main sections. by incorporating anionic phosphorylated tyrosine residues into

a cationic polypeptide backbone (Figure 4B).° They
synthesized random copolypeptides, namely poly(y-6-(N,N-
dimethyl-N-octylamino)hexyl-1-glutamate)-r-(L-tyrosine)

4.1. Biomedical applications of main-chain amino acid-
containing polymers

Main-chain amino acid-containing polymers have garnered (abbreviated as PHOT), through the ROP of y-(6-chlorohexyl)-
significant interest in biomedicine due to their inherent L-glutamate N-carboxyanhydride (NCA) and L-tyrosine NCA.
biocompatibility, biodegradability, and structural similarity to Two variants, PHOT-1 and PHOT-2, were prepared using 20
natural proteins. These polymers serve as promising platforms mol% and 10 mol% of L-tyrosine NCA, respectively. The
for a variety of biomedical applications, including temperature resulting copolymers were then aminated using N,N-
sensing, antimicrobial treatments, and tissue engineering dimethyloctylamine. Phosphorylated versions of these
scaffolds. Zhu and colleagues synthesized poly(L-cysteine)s copolymers, referred to as PHOPT, were obtained by
containing methylthio side chains (PMTLCs) through ROP for modifying the phenolic groups of tyrosine with phosphate
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Figure 4. (A) Representation of poly(L-cysteine) containing methylthio side-chain-based (PMTLCs) polymer for potential use in temperature sensing
applications. Adapted with permission from ref 49. Copyright (2021) American Chemical Society. (B) Synthesis of antimicrobial polypeptide by incorporating
anionic phosphorylated tyrosine residues into a cationic polypeptide backbone. Adapted with permission from ref 50. Copyright (2017) Wiley-VCH GmbH.
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Figure 5. Schematic representation of hydrogels based on poly(ethylene glycol)-block-poly(glutamic acid) copolymers, each differing in polypeptide segment
topology. Adapted with permission from ref 51. Copyright (2022) American Chemical Society.

groups. Notably, PHOPT-2, which lacks a helical structure in
its phosphorylated state, can be activated by bacterial
phosphatase. This enzymatic dephosphorylation restored the
helical conformation, enabling effective bacterial killing while
exhibiting minimal toxicity toward normal mammalian cells. Li
et al. engineered a series of four distinct hydrogels based on
poly(ethylene glycol)-block-poly(glutamic acid) copolymers,
each differing in polypeptide segment topology and residue
chirality (Figure 5).5! These copolymers were functionalized
with tyramine moieties to enable enzymatic cross-linking and
hydrogel formation. The degradation behavior of both the
copolymers and the resulting hydrogels was systematically
assessed in vitro using L929 mouse fibroblast cells.
Remarkably, materials incorporating D-glutamic acid exhibited
substantially slower degradation rates compared to their L-
glutamic acid counterparts. Furthermore, the architectural
configuration of the copolymers significantly influenced the

degradation kinetics of the poly(L-glutamic acid)-based
hydrogels. In vivo evaluations using a Sprague-Dawley (SD)
rat model further demonstrated that both the stereochemistry
and topology of the polypeptide blocks played critical roles in
modulating the biodegradability of hydrogels and host tissue
response.

4.2. Biomedical applications of side-chain amino acid-
containing polymers

Side-chain amino acid-containing polymers have emerged
as versatile materials in the biomedical field due to their
tunable functionality, self-assembly behavior, and excellent
biocompatibility. Functional amino acid side chains enable
these polymers to respond to physiological stimuli and interact
with biological targets, supporting their use in antimicrobial
applications, drug delivery, biosensing, inhibition of protein
misfolding, and tissue engineering.
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Figure 6. (A) Amino acid-derived cationic polymers exert potent antibacterial effects by compromising the integrity of Gram-negative bacterial outer membranes,
leading to cell wall disruption. Adapted from ref 52. Available under a CC-BY-NC-ND license. (B) Schematic representation of leucine-functionalized
polyzwitterionic copolymer and the antibacterial activity. Adapted with permission from ref 53. Copyright (2024) American Chemical Society. (C) Schematic
representation of side chain lysine and fatty acid pendants alternating copolymer, self-assembly, antibacterial activity, and enzymatic degradation. Adapted

with permission from ref 54. Copyright (2024) Royal Society of Chemistry.

This section highlights selected studies in the field of
antimicrobial polymers, showcasing key advancements and
representative examples. Mukherjee et al. developed a series
of side-chain amino acid pendant polymers incorporating
alanine, leucine, and phenylalanine moieties.>? Among these,
the polymer featuring a cationic leucine side chain
demonstrated notable antibacterial activity, showing greater
efficacy against Escherichia coli than against Bacillus subtilis.
This differential activity arises from structural differences in
bacterial cell walls, with the more anionic and hydrophilic
surface of Gram-negative bacteria enabling stronger
electrostatic interactions with cationic polymers, enhancing
antibacterial efficacy (Figure 6A). Building upon this work,
Banerjee and colleagues designed a leucine-functionalized
polyzwitterionic polymer featuring alternately arranged cationic
amine and anionic carboxylate groups to investigate the
antimicrobial properties (Figure 6B).°® The polymer self-
assembled into bilayer vesicles with a zwitterionic surface at

physiological pH (7.4), exhibiting pH-dependent surface
charge transitions. At acidic pH (5.5), mimicking infection sites,
the vesicles showed strong bacteriostatic activity and induced
bacterial clumping, elongation, and membrane disruption,
unlike the minimal effects observed at neutral pH. Ghosh et al.
engineered an alternating copolymer incorporating lysine and
fatty acid side chains, precisely tuned to achieve a balanced
hydrophobic-hydrophilic profile (Figure 6C).5* This polymer
exhibited potent antibacterial activity against both B. subtilis
and E. coli. Beyond its potent antimicrobial activity, the
copolymer exhibited dual responsiveness to enzymatic
degradation and pH fluctuations, underscoring its promise for
targeted, stimuli-responsive therapeutic applications.

Significant progress has also been made in employing
side-chain amino acid-containing polymers for drug delivery in
cancer therapy. Kumar and coworkers developed pH-
responsive self-assembled block copolymers based on
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Figure 7. (A) Schematic illustration of RAFT-mediated synthesis of amino acid-functionalized block copolymers and their subsequent application in DNA
complexation. Adapted with permission from ref 55. Copyright (2013) American Chemical Society. (B) Synthesis, assembled structures, and DNA complexation
of thermoresponsive lysine-based zwitterionic and cationic block copolymers. Adapted with permission from ref 58. Copyright (2019) American Chemical
Society.
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phenylalanine/alanine side-chain amino acids for applications
in drug delivery and gene transfer (Figure 7A).5° These
polymers were capable of forming polyplex complexes with
plasmid DNA. Furthermore, the self-assembled structures
effectively facilitated the delivery of doxorubicin (DOX) drug to
MCF-7 breast cancer cells. Li et al. developed a novel class of
cationic poly(w-aminohexyl methacrylamide)s, co-modified
with L-arginine and L-histidine, capable of forming nanoscale
polyplexes with plasmid DNA.5® Experimental results
highlighted that an optimized ratio of L-arginine to L-histidine
is crucial for minimizing cytotoxicity while significantly
enhancing cellular uptake and gene transfection efficiency. In
arelated study, Liu and colleagues developed a pH-responsive
zwitterionic polypeptide as a promising platform for anti-tumor
drug delivery.5” By conjugating a lysine-based zwitterionic
polypeptide with the chemotherapeutic agent DOX, they
engineered a system capable of self-assembling into
nanoparticles in aqueous environments, exhibiting clear pH-
responsive behavior. The zwitterionic lysine side chains impart
hydrophilicity and charge balance to the polypeptide,
significantly enhancing its resistance to nonspecific protein
adsorption. This anti-fouling characteristic, combined with
efficient drug release under acidic conditions, superior
biocompatibility, and potent anticancer efficacy, underscores
its potential as an effective and intelligent drug delivery
platform.

Recently, a series of lysine-based block copolymers were
synthesized via RAFT polymerization, incorporating a
thermoresponsive PNIPAM segment and a second block
bearing anionic, zwitterionic, or cationic lysine side chains
(Figure 7B).58 The cationic variant effectively formed DNA
polyplexes through electrostatic interactions, displaying
temperature- and salt-dependent aggregation. In contrast, the
zwitterionic polymer showed no DNA binding but exhibited
excellent cell penetration with low cytotoxicity. These multi
stimuli-responsive copolymers hold strong potential for
biomedical applications and the development of smart
biomaterial surfaces. Datta et al. developed a biocompatible
block copolymer incorporating capric acid and tryptophan,
where the hydrophobic fatty acid imparts water resistance and

the amino acid provides hydrophilicity.5® This amphiphilic
structure enables efficient DOX encapsulation and pH-
responsive release at tumor sites, while the tryptophan moiety
also facilitates DNA binding and sensing.

Side-chain amino acid-functionalized polymers have also
been reported to effectively inhibit protein misfolding, offering
promising avenues for therapeutic intervention in protein
aggregation-related disorders. Amyloid fibril formation from
protein misfolding is implicated in various neurodegenerative
diseases. Although arginine and proline can inhibit fibrillation,
the effectiveness of proline at only high concentrations limits
its biological applicability. To tackle this challenge, our group
recently developed side-chain proline-based polymers that
exhibited remarkable inhibition of in vitro insulin aggregation
(Figure 8A).%° The proposed mechanism suggests that
electrostatic repulsion between similarly charged proline-
based polymers and insulin molecules limits their interaction
during the nucleation phase, thereby failing to significantly
extend the lag phase of fibril formation. However, during the
growth phase, these polymers are anticipated to bind to the
ends of developing fibrils, effectively capping them and
inhibiting further elongation of the amyloid structures. Building
on this, Bera et al. investigated the influence of amino acid side
chain polymer-coated silver nanoparticles on insulin fibrillation
(Figure 8B).5! Among the three tested copolymers, comprising
poly(ethylene glycol) methyl ether and amino acid side chains
(alanine, leucine, and phenylalanine), the phenylalanine-based
polymer-coated nanoparticles demonstrated the most
significant effect, achieving up to 96% inhibition of insulin
aggregation. In a related study, Nayak and colleagues
investigated side-chain proline-based polymers conjugated
with an amyloid B-peptide segment as potent inhibitors of
lysozyme amyloidosis (Figure 8C).5?

Beyond their previously discussed applications, amino
acid-containing polymers have also been explored for their
ability to regulate actin dynamics, a critical process governing
cytoskeletal movement. Since actin filament remodelling is
essential for key cellular functions such as motility, division,
and intracellular transport, these polymers hold significant
promise in influencing cell behavior at the molecular level. Maiti
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et al. reported the effect of a side-chain alanine-functionalized
cationic polymer on actin polymerization (Figure 9A).%® They
proposed that the polymer interacts with multiple G-actin
monomers, promoting the formation of a stable actin nucleus,
which acts as a template to enable the elongation of
filamentous actin through continued monomer addition. In
another report, the effect of amino acid residues (Ala, Phe, and
Leu), and a cholate moiety at the polymer end chain and in
side chains were monitored in modulating actin nucleation
dynamics (Figure 9B).5* Among the various amino acids, Ala
showed the highest activity. The side-chain cholate-
conjugated Ala-based polycationic amphiphiles provided
better control over actin dynamics compared to chain-end
cholate-functionalized copolymers. Thus, the ability of these
polymers to modulate actin dynamics highlighted their
potential as a selective and powerful tool for actin-targeted
biomedical applications.

In wound healing, highly biocompatible dressings that
maintain a moist environment are essential. Amino acid—based
polymers are especially promising due to their biocompatibility
and dual hydrophilic-hydrophobic functional groups, enabling
effective interactions with biological tissues. For example, Park
et al. grafted L-alanine onto chitosan using L-alanine-N-
carboxyanhydride (Ala-NCA) via ROP, producing polyalanine
side chains along the chitosan backbone.®® The resulting
alanine-grafted chitosan (Ala-g-Cts) films were then cross-
linked using glutaraldehyde. The results demonstrated that
Ala-g-Cts is a promising material for tissue regeneration and
wound dressing applications. Zu and coworkers developed a
peptide-functionalized hydrogel composed of methyl
methacrylate lysine (Lys)-based poly(ester amide), methoxy
polyethylene glycol methacrylate, and 2-aminoethyl
methacrylate hydrochloride through a photo-cross-linking
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approach.’® This hydrogel markedly accelerated wound
healing, highlighting its potential as an effective hemostatic
agent and a promising wound dressing for treating infected
wounds.

In addition to their well-established biomedical roles, amino
acid-based polymers have also demonstrated remarkable
potential in other fields. Side-chain amino acid-containing
polymers have been strategically designed for the
development of stimuli-responsive soft materials.®” Halder and
coworkers reported the formation of self-healing gels using
diblock copolymers of polyisobutylene (PIB) bearing leucine-
derived primary amine side chains. These gels were cross-
linked using a PIB-based dialdehyde crosslinker (through
dynamic imine (Schiff base, -HC=N-) bond formation),
enabling gelation without the need for any external stimuli
(Figure 10A). Remarkably, the imine bonds exhibit reversible
breaking and reformation over multiple cycles, simply by
modulating the pH of the system through alternating addition
of acid and base. These dynamic, self-healing gels represent
a promising class of smart soft materials, with potential
applications in tissue regeneration, organ repair, and pH-
responsive delivery of bioactive molecules. Saha et al.
synthesized a fluorophore-free, leucine-conjugated water-
soluble  fluorescent  copolymer, capable of dual
responsiveness to pH and temperature.®® This smart polymer
was subsequently employed for the rapid, selective, and highly
sensitive detection of picric acid in a fully aqueous environment
(Figure 10B).%°

Amino acid-functionalized pendant polymers have also
been extensively explored for the selective sensing and
efficient removal of heavy metal ions from aqueous
environments. Choudhury and coworkers reported the
development of a water-soluble random copolymer derived
from tryptophan, functionalized with a rhodamine moiety,

enabling highly sensitive colorimetric and fluorometric
detection of Hg?* ions in both aqueous media and live cells
(Figure 10C).® In a related study, they synthesized a
fluorescent copolymer via RAFT polymerization using Boc-
tryptophan methacryloyloxyethyl ester and N,N-
dimethylacrylamide. Following Boc deprotection and post-
polymerization modification with 2-pyridinecarboxaldehyde,
the resulting water-soluble copolymers, and even the
hydrophobic homopolymer, demonstrated excellent sensitivity
toward Cu?* and Hg?* ions in water.”* A similar kind of
tryptophan side chain pendant water soluble polymer was also
used for the detection of formaldehyde (Figure 10D)."?

The naturally  occurring amino  acid L-3,4-
dihydroxyphenylalanine (L-DOPA), a biosynthetic precursor to
dopamine, a vital neurotransmitter in the brain, has inspired the
development of a series of water-soluble antioxidant
copolymers to investigate their effect on mitigating cellular
oxidative stress (Figure 11A).7® Artificial ionophores facilitate
selective transmembrane ion transport, an important cellular
process, and disruption of this transport is linked to various
diseases. In this context, Dey et al. investigated PIB-based
polymers bearing amino acid side-chain pendants,
demonstrating their ion transport capabilities across artificial
membranes, thereby offering valuable insights into the design
of synthetic ion channels (Figure 11B).”* Amino acid-
conjugated polymers have also been explored for their
potential in organocatalysis, with the O’Reilly group being
among the pioneers in advancing this field.”> Recently, from
our group, side-chain L-proline-L-alanine  dipeptide-
functionalized block copolymers were explored as efficient
organocatalysts for the aldol reaction between cyclohexanone
and 4-nitrobenzaldehyde with high enantioselectivity at a low
catalyst loading (Figure 11C).”® Amino acid-conjugated
thermoresponsive polymers have also been investigated for
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the design of coacervate droplets, offering dynamic platforms
for compartmentalized biochemical processes. A pyroglutamic
acid-based stimuli-responsive homopolymer was developed,
exhibiting UCST behavior and forming reversible micrometer-
sized coacervate droplets upon cooling (Figure 11D).”” These
droplets efficiently encapsulate diverse cargoes, including
small hydrophobic dyes, hydrophilic anticancer drugs, and
labeled proteins, highlighting the versatility of amino acid side-
chain-derived polymers for broad biomedical applications.
Overall, amino acid-conjugated polymers represent a
multipurpose and promising class of materials, offering
versatile  functionality,  biocompatibility, —and  stimuli-
responsiveness that make them highly suitable for a wide
range of biomedical applications.

5. Conclusion and future outlook

This review highlights a comprehensive overview of recent
breakthroughs in the design and synthesis of amino acid-
functionalized polymers, emphasizing their promise across a
range of advanced applications. Beyond their cost-
effectiveness, amino acids confer a wide range of functional
advantages when integrated into the polymer backbone.
These include tunable optical and catalytic properties, the
ability to drive self-assembly, selective interactions with
biomolecules  for targeted delivery, and inherent
biocompatibility, making them highly valuable components in
advanced polymer design. While main-chain amino acid-
containing polymers hold significant importance, the
emergence of side-chain amino acid-functionalized polymers
has garnered growing interest in the past two decades due to
their enhanced versatility and expanded functional capabilities.
A key advantage of utilizing amino acid residues in the polymer
side chains lies in the versatility they offer for functional group
modification. This tunability provides greater structural and
functional diversity compared to polymers where amino acids
are incorporated into the main chain. Additionally, by carefully
balancing hydrophilic and hydrophobic components within
these polymers, researchers have been able to engineer a
wide array of nanostructures through self-assembly. These
include spherical and worm-like micelles, vesicles, and core-
shell nanogels, showcasing the broad morphological potential
of side-chain amino acid-based polymer systems.

In addition to their inherent ability to self-assemble into a
variety of nanostructures, these polymers possess several
desirable properties, such as stimuli-responsiveness, excellent
aqueous solubility, high bioavailability, low cytotoxicity, that
collectively make them highly attractive for desired biomedical
applications. Importantly, the success of these applications
depends on the intelligent molecular design of the polymers.
This includes incorporating appropriate cationic charge for
efficient gene delivery, achieving a fine balance between
hydrophilic and hydrophobic components to regulate
antimicrobial activity, engineering zwitterionic structures for
antifouling functionality, and tuning hydrogel properties to
support uses such as self-healing surgical dressings or
scaffolds for ligament and tendon regeneration.

Amino acid—derived smart and functional polymers
represent a highly promising class of biomaterials with broad
applicability in biomedical fields, including drug delivery, tissue
engineering, regenerative medicine, and biosensing. Their
inherent structural versatility, tunable functionality, and intrinsic
biocompatibility make them attractive candidates for clinical
translation. Nevertheless, despite their potential, several
critical challenges continue to limit their widespread adoption
and must be systematically addressed through advanced
material design, and innovative translational strategies. One of
the most significant issues relates to biodegradability, which is
a highly desirable feature for biomedical applications.
However, achieving an optimal and predictable degradation
profile in amino acid—based smart polymers remains a

considerable challenge. Excessively rapid degradation may
lead to premature loss of structural integrity, thereby
compromising tissue support or sustained therapeutic release.
Conversely, overly slow degradation can impede tissue
regeneration, cause long-term accumulation, or interfere with
normal physiological processes. Thus, striking a finely tuned
balance between stability and biodegradability is essential, and
requires careful control over polymer architecture, amino acid
composition, crosslinking density, and environmental
responsiveness.  Another important consideration is
biocompatibility and immunological response. While amino
acid—derived polymers are generally perceived as
biocompatible due to their biomimetic nature, adverse
biological responses cannot be excluded. For instance, certain
chemical modifications, functional groups, or degradation
byproducts may elicit local inflammation, immunogenicity, or
even allergic reactions. The degree of compatibility is strongly
influenced by factors such as polymer composition, surface
chemistry, and the dynamic interactions with surrounding
tissues and cellular environments. Comprehensive evaluation
of immunogenicity and toxicity, both in vitro and in vivo
condition remains indispensable for ensuring their safety
profile prior to clinical use. The regulatory and translational
hurdles must be overcome before amino acid—based smart
polymers can advance into clinical practice. Beyond
demonstrating efficacy in controlled experimental settings,
these materials must undergo stringent safety evaluations,
long-term performance studies, and compliance with
regulatory  frameworks governing medical devices,
biomaterials, and therapeutics. Furthermore, emerging
strategies, such as the integration of computational modeling,
high-throughput screening, and bioinspired design principles
are expected to accelerate innovation in this field. Thus,
although amino acid—derived smart polymers hold
considerable promise for next-generation biomedical
applications, their successful translation hinges on addressing
challenges related to biodegradability, biocompatibility,
regulatory compliance, and large-scale production. With
continued research, innovation, and collaborative efforts, these
polymers are anticipated to become pivotal components of
advanced therapeutic platforms and to significantly expand
their role in the future of biomedicine.
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