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Abstract: Catalytic asymmetric synthesis has appeared as the preferred method for producing enantiomerically pure compounds, marking 

significant advancements in recent years. In biological processes, asymmetric 
catalysis governs the synthesis of chiral compounds, facilitated through the 
chirality transfer following reactant binding at enzyme active sites. A 
revolutionary milestone in this area was the discovery of oxazaborolidine chiral 
catalysts by Corey, Bakshi, and Shibata (CBS catalysts), empowering the 
enantioselective reduction of achiral ketones. This discovery has had profound 
implications across industry and academia, establishing oxazaborolidines as 
pivotal tools for achieving chirality in chemical systems. The application of 
oxazaborolidines and their derivatives have been extensively explored for 
enantioselective reductions of various functional groups. While previous review 
articles focused on specialized functional groups, this review provides an 
overview (last fifteen years) of practical advancements in the use of borane-
oxazaborolidine catalysts for the enantioselective reduction of challenging 
functional groups such as ketones, ketimines, and oximes. These advancements 
have facilitated the synthesis of various building blocks for natural products. We also highlighted the potential of oxazaborolidinones as it was 
remains largely underutilized, presenting an exciting opportunity for future investigations. 
Keywords: enantioselective, oxazaborolidine, oxazaborolidinone, hydride transfer, reduction.
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1. Introduction 

Chirality is crucial in biological, chemical, pharmaceuticals 
and material science. In recent years, remarkable 
advancement has been attained in catalytic asymmetric 
processes. Catalytic asymmetric synthesis has emerged 
the most desired technique to make enantiomerically pure 
compounds. Asymmetric catalysis enables the production 
of asymmetric compounds in biological processes. Natural 
processes drive reactants bind enzyme active sites by 
chirality transfer. Most commonly inchemical systems, one 
of the reactants binds to the chiral catalyst which then 
influences the other reactant by transferring the chirality.1 

In the mid-20thcentury, the discovery of NaBH4 (1942)2 and 
LiAlH4 (1945)3, known for their typical reducing properties, 
transformed synthetic organic chemistry. Chemist began 
exploring complex metal hydrides, including LiAlH4 and 
LiBH4, for use in synthetic organic chemistry. Over the next 
thirty years, numerous studies investigated "mixture 
reagents," like LiAlH4 combined with chiral 1,2-diols, 1,2-
aminoalcohols, 1,2-diamines, hy-droxymethyl oxazolines, 
BF3, and chiral amino acid esters.4 These systems 
demonstrated good enantioselectivity but were rarely used 
in organic synthesis due to issues like catalyst solubility, 
unknown reactive species, and a lack of mechanistic 
understanding of enantioselectivity. While Mosher and 
Yamaguchi achieved promising results with Darvon alcohol 
and LiAlH4, these problems persisted.5 
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Dr. Prasun Kanti Pradhan earned his Ph.D. in 2006 from the 
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Bengal, India focused on synthetic studies of β-aryl 
ethyl amine derivatives. He did postdoctoral 
research in asymmetric catalysis in the laboratory of 
Professors Masato Kitamura and Riyoji Noyori in 
Noyori's Organic Synthesis Group, under RCMS 
fellowship at Nagoya University, Japan. In 2010, he 
joined TCG Life Sciences Pvt. Ltd. in Kolkata, where he currently 
serves as a Senior Lead Scientist. 

Although applicable to certain substrates, the high costs 
limited the practicality of this reducing system. After thirty 
years of attempting to combine these reducing agents with 
different chiral ligands for efficient asymmetric synthesis, 
results persisted disappointing. Finally, in the 1980s, Itsuno 
and his coworkers achieved encouraging outcomes with 
mixtures of chiral 1,2-amino alcohols and borane (Figure 1).6 
They used borane and chiral amino alcohols (1-4)  (obtained 
from α-amino acids) to reduce aromatic ketones into the 
corresponding secondary alcohols with up to 60% 
stereoselectivity. The amino alcohols (1-4) formed complexes 
with borane (alkoxy-amine-borane complexes), releasing one 

https://doi.org/10.63654/icms.2024.01011
mailto:yogesh.che@cpuh.in
mailto:drpkp@yahoo.com
https://orcid.org/0000-0002-3276-262X


Walia and Pradhan et al.                                                          Innov. Chem. Mater. Sustain.2024, 1(1), 011-029 

https://doi.org/10.63654/icms.2024.01011      12 

equivalent of hydrogen gas at -70 to 0°C. However, they could 
not afford a mechanistic clarification for the detected 
enantioselectivity.7 It was Noyori who first provided a clear 
mechanistic explanation for high enantioselectivity using a 
mixture of (S)- or (R)-BINOL, LiAlH4, and ethanol, known as 
the Noyori reagent.8 
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Figure 1. Amino alcohols used by Itsuno and co-workers. 

 

2. Oxazaborolidine synthesis and its use in 

asymmetric borane reduction 

 
These critical annotations resulted in the discovery of chiral 
oxazaborolidine catalysts by Corey, Bakshi, and Shibata 
(CBS catalysts)9 for the enantioselective reduction of various 
achiral ketones, known as CBS reduction. The CBS catalysts 
were prepared by reacting amino alcohol with two equivalents 
of BH3 in THF or BMS at 30°C for 6 hours. Different borane 
sources and reaction conditions were also explored for 
making oxazaborolidine catalysts (Scheme 1).10 

There are more reports on the enantioselective reduction of 
prochiral ketones than on the reduction of oximes or 
ketimines.11 For prochiral ketones, these reductions are 
highly effective for most aryl alkyl ketones including  various 
functionalized ketones such as heterocyclic ketones, α-
hydroxy ketones, diketones, α-halo- and sulfonyloxy 
ketones, α-keto acetals or thioketals, α, β-enones and 
ynones, keto esters, keto phosphates, α-azido ketones, 
meso-imides, β-keto sulfides and sulfones, and biaryl 
ketones and lactones. The use of even 2 mol% of 
oxazaborolidine catalyst achieves high enantioselectivity 
with predictable configurations (Schemes 2 and 3). 
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Scheme 1.Synthesis of oxazaborolidine (Corey-Bakshi-Shibata Reagent). 
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Scheme 2. Asymmetric reduction of ketimines by borane-oxazaborolidine. 

OH

Ar OR'

O

OH

R

R'

OH

R R'

OH

R
XR'

XR'

OH

R

OH

R

OH

R
OSO2R'

OH

R
X

OH

R
R''

Y

OH

Ar Ar

OH

R

OH

P
OR'

O
OR'

OH

R
OR'

OH

R
SAr

R

OH

S

O

O

Ar

*

X = O or S

n

*

*

x = Br or Cl

* n

n*

*

*

n*

R' = H or alkyl

**

**

n n

*

*

Y = N3 or NR'2
R'' = H, alkyl, or aryl

Functionalised 
Ketones

 
Scheme 3. Asymmetric reduction of functionalized ketones by borane-

oxazaborolidine. 

 
They established the reaction of amino alcohols with two 
equivalents of BH3 in THF at 35 °C formed two equivalents of 
H2 gas and the oxazaborolidine, which was achieved in pure 
form upon subsequent elimination of the solvent and excess 
BH3 under reduced pressure and sublimation (Scheme 4). 
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Scheme 4. Enantioselective reduction of ketones by oxazaborolidine 

proposed by Corey. 

 
The pioneering discovery of oxazaborolidine marked a 
milestone, leading to the rapid expansion of CBS reduction, 
which is now considered a major synthetic method for the 
asymmetric reduction of prochiral ketones. This reduction 
technique has broad applications, including the synthesis of (1) 
chiral ligands, (2) intermediates, (3) bioactive compounds, and 
(4) natural products. 
The use of the above-mentioned stoichiometric reagents 
achieved remarkable success, but it required at least one 
equivalent of the reagents. This drawback, due to the low 
availability and high cost of the reagents, accentuated the need 
to develop catalytic methods for these sorts of reductions. 
Later, Itsuno and Corey observed high enantioselectivity with 
predictable configurations in the reduction of prochiral ketones, 
even with just 2 mol% of oxazaborolidine (Figure 2).12 
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Figure 2. Selected oxazaborolidines. 

 
However, these borane exporters have certain limitations for 
large-scale implementations, including high sensitivity to air 
and moisture, low concentration and stability of BH3-THF, and 
the high volatility, flammability, and nasty scent of BMS. 
The oxazaborolidine-catalyzed borane reductions have been 
extensively studied by Itsuno13 and Corey14. Given the 
numerous reviews till date, this review attention on the fresh 
applications of chiral borane-oxazaborolidines in synthetic 
organic chemistry.15 Baranowska-Łaczkowska and colleagues 
theoretically investigated B-substituted oxazaborolidine–
borane complexes using MP2 and DFT/B3LYP methods. They 
observed that in closed structure complexes, the 
oxazaborolidine ring with a B–H–B bond is more planar 
compared to open complexes, due to a rigid hydrogen bridge 
between the boron atoms.16a The interaction energies in the 
closed complexes are 1.5 to 2.5 times greater than those in the 
open complexes, with the highest values found in B-
trifluoromethyl substituted complexes. This increase is likely 
due to the strong electron-withdrawing trifluoromethyl (CF3) 
group, which reduces electron density on the B1 atom and 
leads to the formation of a B–H–B bond (Figure 3). The 
enhanced interactions in B-trifluoromethyl complexes suggest 
they may be more stable and easier to isolate, despite the 
computational model not considering factors like solvent 
effects. 
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Figure 3. Close vs open ring in B-H-B bond. 

 
Kettouche et al. explored the origin of selectivity in the [2+2] 
cycloaddition step of the enantioselective reduction of ketone 
mechanism by a B-methoxy oxazaborolidine catalyst resulted 
from (–)-β-pinene.16b They provided a clear clarification of the 
construction of O–B and N–B bonds through a two-stage, one-
step mechanism using electron localization function 
topological analysis. They proposed that the stability difference 
between these bonds primarily arises from the methanediyl 
group alignment within the pinene skeleton.  
In connecetion with the enantioselctive reduction of ketamine, 
Nacereddine et al. studied theoretically to undedrstand the 
origin of enantioselectivity by using transition state theory and 
DFT methods at the B3LYP/6-31G(d,p) level by 
oxazaborolidine catalyst.19c Their findings show that hydride 
transfer to the Si face is more favorable than to the Re face. 
Analysis of non-covalent interactions and molecular 
electrostatic potential reveals that several favorable 
interactions during the Si face hydride transfer contribute to the 
observed enantioselectivity (Figure 4). Additionally, Electron 
Localization Function topological analysis directs that the 
hydride transfer mechanism occurs through a non-concerted 
three-stage. 
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Figure 4. Interactions during the hydride transfer (Re & Si face). 

Bach and Daniel provided an outstanding overview on the 
diversity and intricacy of chiral 1,3,2-oxazaborolidine catalysts 
used in asymmrtic photochemical reactions. They emphasized 
the significance of the B-H-B bridging interaction in B-
substituted oxazaborolidine-BH3 complexes. In these 
reductions, oxazaborolidines serve both as catalysts and 
stoichiometric reagents for asymmetric induction. 
Amongthese, the well-known, commercially available CBS 
reagents and their analogues are widely recognized as some 
of the utmost effective asymmetric catalysts for such 
reductions.14,17 Typically, oxazaborolidine-mediated borane 
reductions are conducted by adding prochiral ketones, imines, 
or oximes to a mixture of oxazaborolidine and borane 
transporters in an suitable solvent at ambient temperature. 
Although, Corey and his team introduced fluorine substituents 
into the chiral ligand, resulting in a new, second-generation of 
chiral oxazaborolidinium cationic class which is effective even 
at loadings of 1–2 mol %.18 These species, when combined 
with various Lewis acids, are highly effective for Diels–Alder 
reactions, achieving good yields and high enantioselectivities 
(>95%ee) and these new catalysts particularly appealing for 
large-scale production. They found that using the strong acid 
triflimide (Tf2NH) in a CH2Cl2 solution enhances the catalytic 
activity of these oxazaborolidines. The combination of Tf2NH 
with biscoordinating Lewis acids TiCl4 or SnCl4 as coactivators 
significantly boosts catalytic efficiency. This increase in acidity 
with Tf2NH is notably greater when paired with biscoordinating 
agents like TiCl4 and SnCl4 compared to monocoordinating 
salts, even strong Lewis acids including AlBr3 and BBr3 in 
CH2Cl2 or CH2Cl2/toluene. The enhanced acidity of Tf2NH is 
attributed to the formation of a stabilized cyclic anionic complex 
with TiCl4, suggesting broader applicability. The activation of 
fluorinated oxazaborolidines using Tf2NH–TiCl4 has been 
demonstrated its effectiveness while use in the 
enantioselective (4 + 2) cycloaddition reaction to afford α,β-
unsaturated acid chlorides (Figure 5). 
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Figure 5. Corey’s Second Generation Catalysts (Top); reactive complex 

for [4+2]-cycloaddition reactions (Bottom) 

 
First, Brown et al. achieved the synthesis of hebelophyllene E 
(8) and established its previously strange relative configuration 
by synthesizing epi-ent-hebelophyllene E. The key of the 
methodology was the catalytic enantioselective [2+2] 
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cycloaddition step using a novel oxazaborolidine catalyst 7, 
which facilitated the reaction of alkenes 6 and allenoates 5 to 
produce chiral geminal dimethylcyclobutanes adduct with high 
functional-group tolerance. This tactic permitted a late-stage 
cycloaddition with a completely functionalized alkene, trailed 
by a diastereoselective reduction, leading to the 
hebelophyllene natural product (Scheme 5).19 
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Scheme 5. Enantioselective [2+2] cycloaddition by oxazaborolidine catalyst. 

 
 

3. Synthesis of natural products 

congeners 

Oxazaborolidines have demonstrated to be extremely 
beneficial and versatile catalysts in the synthesis of various 
biologically significant complex molecules, such as estrone, 
desogestrel, laurenditerpenol, and dolabellane-type marine 
natural products, including the oral antiflu drug oseltamivir 
(Tamiflu®). The development of the avian virus N1H5 raises the 
opportunity of a pandemic wave of deadly flu, demanding 
prompt action.20 Therefore, the total synthesis of oseltamivir 
offers several advantages over existing procedures and has 
the potential to rise the production rate. 
 
A short, scalable, and straightforward enantioselective Diels–
Alder reaction route was reported by Corey et al.21 for 
synthesizing the anti-influenza neuraminidase inhibitor 
oseltamivir (Tamiflu® 13) from 1,3-butadiene (9) and acrylate 
10. The reaction of butadiene 9 with trifluoroethyl acrylate (10), 
in the presence of S-prolinol-derived oxazaborolidine cation 
catalyst 11, formed the adduct 12. This adduct was then further 
elaborated through multiple steps to synthesize oseltamivir 
(13) (Scheme 6). 

Enantioselective reduction of α-methylene ketones using 
oxazaborolidine-catalyst have reported Ishibashi et al.22a 
efficiently and conducted the rection using 
borane−diethylaniline (BH3-Et2NPh) as a stoichiometric 
reducing agent. Combining this method with the successive 
hydrogenation of the allylic alcohol produced enhanced 
stereoselectivity during the reduction of 24-oxocholesteryl 
ester to 24-(R)-hydroxycholesteryl ester. Under optimized 
conditions, the oxazaborolidine (Me-CBS)-catalyzed reduction 
of 14 afforded the allylic alcoholintermediate with 87% yield 
and high enantioselectivity (R/S 97.5:2.5). The hydrogenation 
of exo-methylene group regioselectively was achieved the 
intermediate using H2 and Wilkinson’s catalyst, resulting in (R)-
hydroxycholesteryl acetate 15 with 84% yield (Scheme 7). 
Tülay Yıldız developed a synthetic approach to produce new 
chiral allylic alcohols 17 through the enantioselective reduction 
of (E)-α,β-unsaturated ketones 16. This method employs 
oxazaborolidine catalysts, which are derived from amino 
alcohol and trimethylboroxine, and achieves high 
enantioselectivity and chemoselectivity. The reduction is 
carried out in toluene at −20 °C and typically completes within 
0.5–2 hours (Scheme 8). 22b 
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Scheme 8. Enantioselective reduction of α-methylene ketone. 

 
Epothilones represent an encouraging new class of anticancer 
drugs (Figure 6). Preclinical studies have exposed that 
epothilones effectively bind to and alleviate microtubules, 
similar to paclitaxel but with some differences, and they are 
effective in tumor representations resistant to paclitaxel. 
Clinical data from phase I and phase II trials are accessible for 
BMS-247550, BMS-310705, EPO906, and KOS-862. Like 
taxanes, epothilones prevent cancer cell division by intrusive 
with tubulin. However, early trials suggest that epothilones deal 
better effectiveness and milder adversarial effects compared 
to taxanes.23 
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Figure 6. Structure of Epothilones A, B, C and D. 

 
Reiff et al.24 successfully accomplished the total synthesis of 
epothilones A, B, C, and D using novel and efficient 
asymmetric synthetic methods to prepare two key building 
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blocks (Scheme 9). A decisive step in this synthesis was the 
asymmetric reduction of (E)-5-(tert-butyldimethylsilyloxy)-2-
methyl-1-(2-methylthiazol-4-yl)pent-1-en-3-one 18, achieved 
using (R)-Me-CBS-oxazaborolidine to yield (S)-alcohol 19. The 
final epothilone products were achieved through a well-
established total synthetic strategy.25 
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Scheme 9. Total synthesis of Epothilones A, B, C and D. 

 
 
Rano et al.26 reported the asymmetric synthesis of 3,4-dihydro-
2-[3-(1,1,2,2-tetrafluoroethoxy)phenyl]-5-[3(trifluoromethoxy) -
phenyl]-α-(trifluoromethyl)-1(2H)-quinoline ethanol 22, a 
cholesteryl ester transfer protein (CEPT) inhibitor. The 
asymmetric alcohol intermediate 21 was achieved through the 
chiral reduction of a ketone using Corey’s (R)-Me CBS 
oxazaborolidine reagent and a tetrahydroquinoline core was 
formed via a Cu-mediated intramolecular amination reaction. 
Additionally, the synthesis of the prochiral ketone 20 was 
enhanced by eradicating the use of a harmful aryltin reagent 
(Scheme 10). 
 
First, Canales et al.27 reported the synthesis of hitherto 
mysterious N-methyl oxazaborolidine cations 23, specifically a 
cationic proline derivative that functions as a stronger chiral 
Lewis acid than the typical oxazaborolidine catalyst. They 
presented a new method for synthesizing oxazaborolidines by 
reacting lithium aryl borohydrides with amino alcohol salts. 
This cationic oxazaborolidine reagent is highly effective in 
[4+2] cycloaddition reactions. For instance, the diene 7-
methoxy-4-vinyl-1,2-dihydro-naphthalene 24 reacted with the 
2-methyl-cyclopent-2-enone dienophile 25 to produce the 
adduct 26 in noble yield and with extraordinary 
enantioselectivity (Scheme 11). Several diverse examples, 
including estrone, demonstrate the broad applicability of this 
catalytic methodology. 
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Scheme 10. Total synthesis of 3, 4-dihydro-2-[3-(1,1,2,2-tetrafluoroethoxy) 

phenyl]-5-[3-(trifluoromethoxy) phenyl]-α-(trifluoromethyl)-1(2H)-quinoline 
ethanol. 
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Scheme 11. Asymmetric [4+2] cycloaddition reaction by N-methyl 

oxazaborolidine cations. 

 
Corsifuran A (29) is one of three corsifurans, featuring a 4',5-
dioxygenated-2-arylbenzofuran skeleton. This compound was 
isolated from the Mediterranean liverwort Corsinia 
coriandrina.28 The skeleton of corsifuran is believed to be 
biogenetically derived from a stilbenoid precursor, and the 
biogenic material has been validated to possess high 
enantiomeric purity.29 
 
The asymmetric reduction of ketones using borane-
oxazaborolidine could potentially enable the synthesis of 
various natural products.30a Adams et al. successfully 
synthesized enantiomerically pure corsifuran A for first time 
through an enantioselective reduction procedure, enabling the 
validation of the absolute stereochemistry of the natural 
product. The asymmetric reduction of ketone 27a with the B-
OMe oxazaborolidine derived from either (1R,2S)- or (1S,2R)-
cis-1-amino-indan-2-ol afforded the S and R enantiomers of 
the alcohol 28a with 76% and 78% enantiomeric excess, 
respectively. Further, recrystallization of the alcohol lead to in 
>99% enantiomeric purity. Corsifuran A (29) was then obtained 
via cycloetherification using numerous palladium catalysts 
along with widespread ligands and bases (Scheme 12).30b 

 

Kawanami et al.30c reported the enantioselective reduction of 
the highly reactive prochiral trifluoromethyl ketone 27b to its 
corresponding alcohol 28b using an oxazaborolidine catalyst 
produced in situ from BH3–THF with chiral lactam alcohol. This 
catalyst assisted the enantioselective reduction of 
trifluoromethyl ketones 27b in CHCl3 at room temperature, 
achieving up to 86% enantiomeric excess (ee) (Scheme 13). 
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Scheme 12. Asymmetricsynthesis of corsifuran A through an 

enantioselective oxazaborolidine reduction. 

 
They also found that CHCl3, a polar halogenated organic 
solvent, was optimal for attaining high enantioselectivities with 
reactive trifluoromethyl ketones, as CH2Cl2 generally provides 
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lower ee compared to THF and toluene in the asymmetric 
reduction of typical ketones. This practical method offers 
several advantages, including stability towards air and 
moisture and milder reaction conditions compared to 
previously reported methods.31 They also investigated the 
influence of BF3 on the enantioselective reduction of 
trifluoromethyl ketones 27b with a chiral lactam alcohol and 
borane. They found that BF3·THF improved the 
enantioselectivity of the reduction of reactive trifluoromethyl 
ketones at room temperature. The BF3·THF addition to an in 
situ generated oxazaborolidine catalyst, derived from the chiral 
lactam alcohol and borane, boosted both the enantioselectivity 
(up to 90% ee) and yield (up to 91%).30d 
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CF3Ar

N
H

O

OH

Ar

Ar

BH3.THF (160 mol%)

BH3.THF, CHCl3,RT

ArF3C

OH(10 mol%)

27b 28b  

 

 
 
 
Scheme 13. Enantioselective reduction of trifluoromethyl ketones by 

borane-oxazaborolidine derived from a chiral lactam alcohol. 

 
Sasikala et al.32 developed an efficient, cost-effective, and 
scalable synthesis of ezetimibe (32), an 
antihypercholesterolemia drug. Chiral oxazolidinone chemistry 
was engaged to establish the necessary stereochemistry of the 
β-lactam ring 30, while chiral oxazaborolidine was used to 
determine the stereochemistry of the hydroxyl group. This 
synthesis significantly reduces costs and facilitates large-scale 
production of ezetimibe (Scheme 14). 
 
Tamura et al.33 reported the total synthesis of peumusolide A 
(35), an inhibitor of MAPK/ERK kinase (MEK) with a non-
antagonistic nuclear export signal (NES)34 mode, derived from 
the South American medicinal plant Peumus boldus Molina. 
Peumusolide A has been established to be a encouraging anti-
tumor skeleton, showing selective growth inhibition in MEK-
activated tumor cells.35 In addition to peumusolide A, numerous 
related polyketides with extraordinary biological activities have 
also been identified.36 

 

Peumusolide A had been synthesised via an enantioselective 
reduction of 4-en-1-yn-3-one 33 to form corresponding alcohol 
34 with the use of chiral oxazaborolidine as the vital reaction 
step (Scheme 15). 

R

O

N

RO

OBn

R

N

RO

OBn

OH

N

F

F O

OH

OH

(R)- Me-CBS

5% Pd/C, H2

Ezetimibe

30 31

32

R =

F

 
 

Scheme 14. Synthesis of ezetimibe. 
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Scheme 15. Total synthesis of (S)-peumusolide A. 

 
The total syntheses of the odorants georgyone, arborone, and 
associated structural congeners was reported by Corey and 
Hong37. A decisive step in each synthesis was the 
intermolecular Diels–Alder reaction between diene 36 and 2-
methylacrolein 37, catalyzed by (S)-oxazaborolidinium salt. 
This reaction was extremely enantioselective, producing the 
adduct 38 through an exo [2+4] pathway with 96% 
enantiomeric excess and a 76% yield. For instance, in the 
synthesis of (–)-georgyone, the intermediate was achieved 
with 96% enantiomeric excess and a diastereomeric ratio of 
6:1 (Scheme 16). 

MeMe
Me
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N
B

O

H

Me

Ph

Ph

NTf2

Me Me Me

CHO

Me
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(20 mol%), DCM

-95 oc

36 37 38  
Scheme 16. Oxazaborolidinium salt catalysed intermolecular Diels-Alder 

reaction. 

 
Shimoda and Yamamoto developed a novel axially chiral 
oxazaborolidine catalyst (39a), which combines a chiral 
boronic acid with a readily modifiable achiral amino alcohol.38a 
This catalyst demonstrated effective in a Diels–Alder reaction 
between diene 41 and dinophile 40, yielding the desired adduct 
with notable enantioselectivity. Furthermore, the 
bis(oxazaborolidine) catalyst (39b), featuring two Lewis acidic 
centers, achieved even greater enantioselectivity in the Diels–
Alder reaction (Scheme 17). 
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Scheme 17. Axially chiral oxazaborolidine catalysts for effective Diels-Alder 

[4+2] reaction. 

 
Chen et al.38b described a catalytic, highly regio- and 
enantioselective Diels–Alder reaction involving (E)-4-oxopent-
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2-enoates (45) as dienophiles and diene 44 to afford the 
adduct 46. This reaction was facilitated by oxazaborolidines 
43, which were activated into cationic chiral catalysts using 
either the strong acid triflimide or AlBr3 (Scheme 18). 
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Scheme 18. Catalytic regio- and enantioselective [4+2] Diels-Alder reaction. 

 

 

4. Synthesis of Chiral Intermediates, 
Ligands and Building Blocks 

The synthesis of several therapeutic agents and complex 
natural products depends on the accessibility of chiral 
intermediates, which serve as essential building blocks for 
further structural and stereochemical variations. Asymmetric 
catalysis has turn into one of the most resourceful methods for 
preparing a diverse range of small molecules in highly 
enantiomerically-enriched forms. 
Cho39 reviewed the use of chiral oxazaborolidine-mediated 
borane reductions for prochiral ketones and ketimines. This 
approach has been extensively engaged for the greatly 
effective asymmetric synthesis of a wide array of chiral natural 
products, building blocks, bioactive compounds, intermediates, 
and ligands, all of which feature chiral alcohol or amine 
functionalities in their structures. 
 
Xiao et al.40 employed natural product skeletons as novel chiral 
synthons for asymmetric catalytic transformations and 
presented a new class of structurally stiff tricyclic chiral ligands 
for asymmetric catalysis. They described the design and 
synthesis of these fresh chiral ligands and their effectiveness 
in the asymmetric reduction of ketones, achieving good yields 
and enantioselectivities. They exploited a tryptophan-based 
hexahydropyrrolo [2,3-b]indole skeleton as a rigid chiral 
backbone to achieve enantiocontrol, benefiting from its tricyclic 
and structurally rigid nature (Figure 7). This chiral 
oxazaborolidine ligand was synthesized in situ for the 
reduction of functionalized ketones. 

N
NH

OH

R'

R'

R

R = CO2Et,  COCH3, CO2CH(CH3)2, CO2Ph

R' = H, Ph
 

 
Figure 7. Natural product skeletons used for oxazaborolidine catalyst. 

 

Yune et al.41 reported the enantioselective reduction of 
prochiral ketones using mesoporous silica-supported 
oxazaborolidines in a heterogeneous phase (Figure 8). They 
estimated how immobilization of oxazaborolidines on silica, 
with different substituents on the boron and nitrogen atoms, 
affected the enantioselective reduction of acetophenone. The 
performance of the silica-supported oxazaborolidines was 

compared to their homogeneous analogs by changing several 
parameters. 

O
B

NH

HN

Si

O O O OH

Ph Ph

 
 

 
Figure 8. Silica supported oxazaborolidine catalyst. 

Kettouche et al.42 introduced a fresh method for preparing 
oxazaborolidine catalysts in situ, employing 1,2-aminoalcohol, 
NaBH4, and CH2I2 for the asymmetric reduction of prochiral 
ketones and imines (Scheme 19). The oxazaborolidine catalyst 
is handily synthesized at room temperature in THF using 1,2-
aminoalcohols and BH3 generated from the sodium 
borohydride/CH2I2 reagent system. This in situ prepared 
oxazaborolidine/BH3 reagent system is effective for reducing 
prochiral ketones and N-substituted imines to their 
corresponding alcohols and amines with reasonable to good 
enantiomeric excesses. This method delivers a relatively 
humble and inexpensive methodology for this broadly used 
transformation in synthesis. 
 
Corey and his colleagues43 accompanied a catalytic, 
enantioselective Michael addition reaction using 20 mol% of 
catalyst. The reaction among a silyl ketene acetal 47 and 
cyclohexenone 48 formed the 1,4-addition product 49 with a 
yield of 91% and an enantiomeric excess of 90% (Scheme 20). 
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Scheme 19. Asymmetric reduction of prochiral ketones and N-substituted 

imines. 
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Scheme 20. Enantioselective Michael addition reaction by 

oxazaborolidinum salt. 

 
Application of chiral oxazaborolidinium salts in asymmetric 
vinylogous Mukaiyama Aldol reaction, was reported first by 
Boeckman et al. 44 The synthesis of butenolide 52 was 
achieved with good diastereoselectivity by adding 
trimethylsiloxyfuran 51 to aldehyde 50 in the presence of 
oxazaborolidine catalyst 53. Incorporating additional methyl 
substituents on the diphenyl group of the oxazaborolidinium 
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salt enhanced the diastereoselectivity to over 90% with an 80% 
yield (Scheme 21). 
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Scheme 21. Asymmetric vinylogous Mukaiyama Aldol reaction by 

Oxazaborolidinium salts. 

 
Jones et al.45a described an enantioselective reductive 
desymmetrization of glutarimides 55 using an oxazaborolidine 
catalyst 54a derived from cis-1-amino-indan-2-ol. The reaction 
was shown to proceed via a stereoablative mechanism, which 
boosted the enantioselectivity of the intermediate hydroxy-
lactam. The process accommodated various substituents at 
the 4-position 56, achieving with 61% enantiomeric excesses 
exceeding 82% (Scheme 22). 
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Scheme 22. Enantioselective reductive desymmetrization of glutarimides by 

borane-oxazaborolidine. 

 
The same group also accomplished enantioselective catalytic 
desymmetrization of maleimides by temporarily removing an 
internal mirror plane and using stereoablative over-reduction. 
This approach led to the synthesis of (R)-pyrrolam A (60).45b In 
this over reduction course is critical for attaining product with 
yield 85% and up to 99% ee (Scheme 23) 
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Scheme 23. Asymmetric desymmetrization of maleimides leading to 

synthesis of (R)-pyrrolam A. 

 
Grayson and Farrar reported that their computational analyses 
have introduced a new reaction model with benzaldehyde 62 
and alkene 63a for the noncovalent interactions in the 

oxazaborolidine 61 catalyzed Mukaiyama aldol reaction, which 
aligns with experimental selectivity and has been validated for 
systems with less polarized and nonaromatic boron 
substituents.46 The observed selectivity is explained by π–π 
interactions present in the major transition states, which are 
geometrically infeasible in the minor transition states due to the 
orientation of nucleophilic binding (Scheme 24). 
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Scheme 24. Model reaction for computational analysis. 

Drummond et al.47 developed a new general method for 
preparing optically active α-amino acids. The process 
comprises a key ruthenium-catalyzed cross-coupling reaction 
to produce a range of α,β-unsaturated ketones 65, which are 
then reduced to allylic secondary alcohols 66 using a chiral Me-
CBS oxazaborolidine. The resulting alcohol endures a thermal 
Overman rearrangement to form a series of allylic 
trichloroacetimidates, which are subsequently transformed to 
the target α-amino acids 67 under standard conditions, yielding 
good overall results (Scheme 25). 
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Scheme 25. Synthesis of optically active α-amino acid. 

Yang et al.48 established a novel camphor-based chiral amino 
alcohol and described its use in the asymmetric reduction of 
prochiral aryl ketones by borane at room temperature, utilizing 
oxazaborolidines derived from chiral amino alcohols. The 
oxazaborolidine 69 demonstrated greater selectivity compared 
to 68 (Scheme 26). 
Zaidlewicz et. al were introduced of some new class of 
oxazaborolidine derived from terpene and used for 
enantioselective reduction of prochiral ketones and 
oximeethers.49 They found that the reduction of (E)-ketoxime 
O-benzyl ethers 71 using borane catalyzed by terpene-derived 
oxazaborolidines 70 specifically those derived from (1R)-
nopinone and (1R)-camphor produced the corresponding 
amines up to 99% enantiomeric excess. In contrast, 
oxazaborolidines derived from (1S)-2-carene and (1S)-3-
carene exhibited lower selectivity. Additionally, (S)-1-(3-
methoxyphenyl)ethanamine (72), a key intermediate for 
synthesizing (S)-rivastigmine (73), was obtained with 94% ee 
by reducing (E)-1-(3-methoxyphenyl)ethanone O-benzyl 
oxime using borane and oxazaborolidine generated from (S)-
valinol (Scheme 27).49e 
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Scheme 26. Synthesis of a novel camphor based chiral amino alcohol for 

preparing oxazaborolidine catalyst. 
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Scheme 27. Enantioselective reduction of ketoxime ethers by terpene-

derived oxazaborolidines. 
 

Breuning’s group presented two novel tricyclic 1,3,2-
oxazaborolidines 74, synthesized in seven steps from methyl 
Boc-l-pyroglutamate. These compounds feature an ortho- and 
peri-fused 5/5/6-ring system with a B–N bond forming one of 
the ring junctions.50 Asymmetric borane reduction of ketones  
75a, the B-alkoxy bridged derivative succeeds superb 
enantioselectivities (up to 98% ee), with activity akin to that of  
the standard CBS catalyst. In contrast, the closely related B-
alkyl bridged derivative shows lower enantioselectivity and 
reduced activity, as confirmed by competition experiments 
(Scheme 28). 
 
Kettouche conducted an in-depth DFT study using wB97XD/6-
31G(d,p) to explore the mechanism of enantioselective ketone 
reduction catalyzed by a B-methoxy-oxazaborolidine derived 
from (-)-β-pinene.51 The study revealed that the reaction 
occurs in six steps: (a) formation of the active catalyst-borane 
adduct (Figure 9a), (b) coordination of the aromatic ketone to 
the catalyst-borane adduct (Figure 9b), (c) transfer of a 
hydrogen atom from the boron atom to the prochiral carbon 
center (Figure 9c), (d) creation of a four-membered ring (B-O-
B-N) through a [2 + 2] cycloaddition (Figure 9d), (e) opening of 
the four-membered ring (B1-O2-B3-N4) (Figure 9e), and (f) 
regeneration of the catalyst (Figure 9f).  

Kettouche concluded that the stereoselectivity of the reaction 
is determined by the intramolecular hydride transfer from the 
BH3 moiety to the Si or Re face of the carbonyl substrate. The 
S-type chirality of the reduced products aligns with 
experimental results (Figure-9). Additionally, non-covalent 
interaction analysis of the most favorable transition state 
advocates a dispersive interaction between the hydrogen atom 
of the methanediyl group within the pinene skeleton. The 
stabilization provided by the two-atom [O-B] unit helps explain 
the experimentally observed S selectivity. 
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Scheme 28. Enantioselective reduction of reactive ketones by 

oxazaborolidine catalyst. 
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Figure 9. Proposed catalytic steps based on DFT analyses  

 
Krische et al.52 fruitfully synthesized neaumycin B (80), a 
femtomolar inhibitor of U87 human glioblastoma, utilizing Ru-
JOSIPHOS-catalyzed C–C bond-forming reactions. The key 
intermediate 79 to accessing neaumycin B (80) was the 
development of an asymmetric vinylogous Mukaiyama aldol 
(VMA) reaction specifically designed for linear aliphatic 
aldehydes 77, a novel route for terminally methylated dienyl 
ketene acetals (Scheme 29). 
Disadee and Ruchirawat described an enantioselective 
synthesis of both natural and unnatural hypoestestatin 82a and 
82b analogues with high yields (~91%) and significant 
enantioselectivity (up to 89% ee).53 This was achieved through 
the parallel kinetic resolution of racemic ketones 81 using CBS- 
oxazaborolidine-catalyzed reduction, which produced two 
separable diastereomeric alcohols. Notably, this was the first 
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Scheme 30. Oxazaborolidine-catalyzed asymmetric reduction for seco-

hypoestestatin 1 and 2. 

  
time demonstrated the catalytic asymmetric reduction for seco-
hypoestestatin 1 and 2.  

Scheme 31. Enantioselective ketone reduction by N-boranes (noncyclic) 

and tris(oxazaborolidine)borazines (cyclic) derived from chiral β-amino 
alcohol. 
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This approach embraces potential for adapting racemic 
mixtures into enantioenriched forms, which could be useful for 
numerous biological assays in the future (Scheme 30). 
Vougioukalakis et al.54 thoroughly examined the influence of 
chiral β-amino alcohol N-boranes (noncyclic, 83) and their 
corresponding tris(oxazaborolidine)borazines (cyclic; 84) on 
the catalytic asymmetric reduction of prochiral ketones 75. 
Both cyclic and noncyclic catalysts commendably twisted 
secondary alcohols 76 with an ~82% yield. Interestingly, 
polycyclic borazine catalyst proved stability merely in nonprotic 
dry organic solvents, whereas the noncyclic catalyst persisted 
stable in both aqueous and organic solvents (Scheme 31). 
Sharma and colleagues described an efficient, concise, and 
scalable alternative method for synthesizing Izenamide A (87a) 
and B (87b) with high stereoselectivity.55 Their tactic involves 
the enantioselective reduction of N-Boc γ-amino β-keto esters 
85 to the corresponding alcohols 86 using 2-methyl-CBS-
oxazaborolidine catalysts. They also demonstrated that by 
switching between different enantiomers of the 2-methyl-CBS-
oxazaborolidine catalyst, they could synthesize both 
diastereomers of the alcohol. This methodology could be of 
excessive significance, as γ-amino β-ketoesters exemplify a 
key motif in drug discovery (Scheme 32). 
 

5. Oxazaborolidinone 

The enantioselective reduction of prochiral carbonyls and 
ketimines has been widely studied with oxazaborolidine 
catalysts compared to oxazaborolidinones. Kiyooka et al.56 
were the first to report an aldol reaction encouraged by a chiral 
oxazaborolidinone 88a. This reaction involved a silyl ketene 
acetal 89 derived from ethyl 1,3-dithiolane-2-carboxylate and 
aldehyde 90, resulting in the synthesis of acetate aldols 91 with 
high enantiomeric purity (Scheme 33). 
 
 

 
Scheme 33. Chiral oxazaborolidinone catalysed aldol reaction. 
 
 

Komura et al.57 discovered that the asymmetric repetitive 
Mukaiyama Aldol reaction among bis(trimethylsilylketene 

thioacetal) 92 and dialdehydes 93, when executed in the 
presence of chiral oxazaborolidinone 88a, yielded optically 
active poly(β-hydroxy thioester) 94. The extent of asymmetric 
induction during polymerization was measured through a 
model reaction and by chiral HPLC analysis of the degradation 
products of the chiral polymers (Scheme 34). Simple 
Mukaiyama Aldol reaction also responded under this 
conditions. 
 
Harada et al.58 reported the inter- and intra-molecular 
differentiation of enantiotopic dioxane acetals 96 using an 
oxazaborolidinone 95 mediated enantioselective ring-cleavage 
reaction. They also perceived the kinetic resolution of racemic 
1,3-alkanediols and the asymmetric desymmetrization of 
meso-1,3-polyols (Scheme 35). 
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Wang et al.59 reported enantioselective Lewis acid-catalyzed 
Mukaiyama-Michael reactions of acyclic enones 99 with 
trimethylsilyl ketene S,O-acetal 63b, using allo-threonine-
derived O-aroyl-B-phenyl-N-tosyl-1,3,2-oxazaborolidin-5-ones 
98 as catalysts to produce 100 (Scheme 36). This model for 
asymmetric induction was recommended based on the 
correlation among catalyst structures and their 
enantioselectivities. 
 
This new class of oxazaborolidinone catalysts 98 compromises a 
convenient method for producing enantioenriched γ-ketoacid thiol 
esters. Various alkenyl methyl ketones were effectively used as 
Michael acceptors, accomplishing enantiomeric excess values of 
85-90% with the use of 10 mol% of the catalyst. 
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Harada and Singh 60 reported an enantioselective Diels–Alder 
reaction between acyclic enone dienophile 101 and diene 41, 
catalyzed by allo-threonine-derived chiral oxazaborolidinone 
(10-20 mol%). This reaction produced the Diels-Alder adduct 
102 with high yield, excellent endo selectivity, and 94% 
enantiomeric excess (Scheme 37). 
Simsek et al.61 developed oxazaborolidinone-promoted 
vinylogous Mukaiyama aldol reactions. They used tryptophan-
derived B-phenyl oxazaborolidinone 103 for the 
enantioselective vinylogous Mukaiyama aldol reaction 
between O,O-silyl ketene acetal 104 and aldehyde 90, 
facilitating efficient entrees to chiral building blocks 105 for 
polyketide synthesis (Scheme 38). Their studies also 
emphasized that isopropyl alcohol is compulsory as an additive 
to overturn the racemic TBS-catalyzed pathway and enhance 
enantioselectivity. For α-chiral aldehydes, they demonstrated 
that selecting proper protecting groups is crucial for achieving 
high selectivities. In the context of total syntheses, R-chiral 
aldehydes were utilized as substrates, revealing that TBS 
ethers afforded useful selectivities compared to PMB-
protected substrates when the right protecting groups were 
chosen. 
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Scheme 37. Allo-threonine-derived chiral oxazaborolidinone catalysed 

Diels-Alder reaction. 
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Scheme 38. B-phenyloxazaborolidinone derived from tryptophane 

catalysed Mukaiyama aldol reaction. 

 
Adachi et al.62a established an asymmetric aldol reaction 
catalyzed by allo-threonine-derived oxazaborolidinone 106. 

This reaction comprises nonactivated aromatic ketones 75b 
and silyl ketene S,O-acetals 107, yielding tertiary hydroxy 
carbonyl compounds 108 with high enantioselectivity (Scheme 
39). They found that using dimethylsilyl ketene S,O-acetals 
instead of the conventional trimethylsilyl derivatives are crucial 
for achieving both effective catalytic activity and high 
selectivity. 
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Scheme 39. Asymmetric Aldol reaction of nonactivated aromatic ketones by 

oxazaborolidinone. 
 

They also confirmed the enantioselective Friedel-Crafts 
alkylation of electron-rich heteroaromatics 109, such as furans 
and indoles, with α,β-unsaturated ketones 110 using same 
oxazaborolidinone catalyst 106. This work marked the first 
successful enantioselective Friedel-Crafts alkylation of furans 
with a monodentate α,β-unsaturated ketone using 
oxazaborolidinone catalysis (Scheme 40). Additionally, the 
catalyst system was effectively applied to the alkylation of 
indoles, widening the range of substrates. The presence of 
N,N-dimethylaniline as an additive was found to be essential 
for achieving high enantioselectivity.62b 
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Scheme 40. Enantioselective Friedel-Crafts alkylation reaction by 

oxazaborolidinone. 
 

Micoine et al.63 have reported an efficient total synthesis of the 
antiproliferative macrolide and cell migration inhibitor 
lactimidomycin 113 (Scheme 41). The synthesis involved the 
key intermediate, the strained 12-membered 1,3-enyne 112, 
which was elaborated to the final target through a highly 
diastereoselective Mukaiyama aldol reaction. This reaction 
was controlled using tryptophan-derived B-
phenyloxazaborolidinone 103 as a strategic component. 
Costantino et al.64 introduced the first example of chiral 
oxazaborolidinones attached to α-layered zirconium 
phosphonates, demonstrating the versatility of these 
zirconium-based materials. They established heterogeneous 
catalysts that executed effectively in Mukaiyama aldol 
reactions, yielding good enantiomeric excess. The catalysts 
were derived from a mixed zirconium sulfophenylphosphonate 
methanphosphonate chiral borane 114 (Figure 10).  
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Figure 10.Oxazaborolidinone on the surface of lamella of α-

Zr[O3PC6H4SO2NHCH(CH(CH3)2COOH)](O3PCH3).nH2O. 

 
While these heterogeneous catalysts exhibited somewhat 
lower performance compared to their homogeneous 
counterparts, the results are encouraging. This suggests 
substantial potential for similar systems utilizing insoluble 
zirconium phosphonates. The layered compounds were 
characterized using various techniques and subsequently 
reacted with BH3-THF to obtain the heterogeneous chiral 
oxazaborolidinone. 
 
In this process, aldehyde 90a and silyl ketene acetal 47 were 
reacted with the oxazaborolidinone immobilized on the surface 
of lamellar α-ZrO3PC6H4SO2NHCH(CH(CH3)2COOH).nH2O 
114, resulting in the formation of the corresponding secondary 
alcohol 115 with up to 50% enantiomeric excess and traces of 
benzyl alcohol (Scheme 42). 
 

Gieseler et al.65 have recently presented an asymmetric 
vinylogous Mukaiyama aldol reaction using aldehyde-derived 
silyl dienol ethers with an oxazaborolidinone catalyst. 
Unsaturated aldehydes assist as valuable building blocks for 
further conversions in polyketide synthesis. This approach, 
which comprises standard transformations and the conjugate 
addition of hydrides followed by internal protonation, enables  
the synthesis of α-chiral aldehydes. The methodology affords 
an efficient route to R-substituted δ-hydroxy-α,β-unsaturated 
aldehydes 119 by reacting alkyl or aryl aldehydes 117 with silyl 
dienol ethers 118 using catalyst 116 (Scheme 43). These δ-
hydroxy-α,β-unsaturated aldehydes 119 are precursors for 
asymmetric protonation in the total synthesis of angiolam.66 
Kalesse et al.67 described an oxazaborolidinone-mediated 
asymmetric bisvinylogous Mukaiyama Aldol reaction with 
alkene 120 and aldehyde 90 that supports the rapid formation 
of conjugated dienols 121. This approach extends the vinylogy 
principle by adding two additional carbons and could be 
performed with a readily available Lewis acid within reasonable 
reaction times. It accommodates a wide variety of aromatic and 
aliphatic aldehydes, facilitating the synthesis of complex 
building blocks for polyketide construction (Scheme 44). 
 
Du et al.68 reported the total synthesis of 27-
Deoxylyngbyabellin A (124), a secondary metabolite from 
marine cyanobacteria, achieved in 10 linear steps with an 
overall yield of approximately 10%. A crucial intermediate, (S)-
β-hydroxy ester 123, was obtained through a chiral 
oxazaborolidinone-mediated asymmetric aldol reaction 
between silyl ketene acetal 47 and aldehyde 122 to afford 56% 
yield. This (S)-β-hydroxy ester 123, together with two essential 
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thiazole units, was subsequently assembled to produce the 27-
Deoxylyngbyabellin A natural product (Scheme 45). 
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Scheme 43. Asymmetric vinylogous Mukaiyama aldol reaction by 

oxazaborolidinone catalyst. 
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Scheme 44. Asymmetric vinylogous Mukaiyama aldol reaction by 

oxazaborolidinone catalyst. 
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6. Conclusion  

Over the years, the use of oxazaborolidine and borolidinone 
catalysts (or stoichiometric reagent) for reducing various 
functionalities has been broadly validated by researchers, 
particularly for their key applications in synthesizing bioactive 
natural products and building blocks. It is clear from this 
comprehensive review that the oxazaborolidine catalysed 
enantioselective reductions play significant roles both 
industrial and academic settings. In contrast, the use of 
oxazaborolidinone catalysts remains relatively unexplored, so 
there is a substantial opportunity to take up further 

investigation in this. Although, its numerous application in 
various chemical reactions, especially asymmetric catalysis 
but there are few drabacks such as limited stability as its highly 
air and moisture sensitive nature; sometime difficult to control 
reactivity for its stoichiometric uses leads to undesired side 
product; highly expensive fluorinated oxazaborolidine catalyst, 
The study of reactions catalyzed by oxazaborolidines and 
oxazaborolidinones holds huge potential, innovative 
developments, and more fascinating aspects are expected to 
originate from this area by enhancing stability using more 
robust functional groups or protective groups, adjusting 
reactivity to minimize side products, and lowering catalyst 
costs through more economical synthetic routes. 
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